1. Sandhya P, Kurien BT, Danda D, Scofield RH. Update on pathogenesis of Sjögren's syndrome. Curr Rheumatol Rev. 2017; 13:5–22.
2. Maślińska M, Przygodzka M, Kwiatkowska B, Sikorska-Siudek K. Sjögren's syndrome: still not fully understood disease. Rheumatol Int. 2015; 35:233–241.
3. Kim JW, Lee J, Hong SM, Lee J, Cho ML, Park SH. Circulating CCR7
loPD-1
hi follicular helper T cells indicate disease activity and glandular inflammation in patients with primary Sjögren's syndrome. Immune Netw. 2019; 19:e26.
4. Sharma R, Chaudhari KS, Kurien BT, Grundahl K, Radfar L, Lewis DM, Lessard CJ, Li H, Rasmussen A, Sivils KL, et al. Sjögren syndrome without focal lymphocytic infiltration of the salivary glands. J Rheumatol. 2019; jrheum.181443.
5. Ramos-Casals M, Brito-Zerón P, Font J. The overlap of Sjögren's syndrome with other systemic autoimmune diseases. Semin Arthritis Rheum. 2007; 36:246–255.
6. Gilboe IM, Kvien TK, Uhlig T, Husby G. Sicca symptoms and secondary Sjögren's syndrome in systemic lupus erythematosus: comparison with rheumatoid arthritis and correlation with disease variables. Ann Rheum Dis. 2001; 60:1103–1109.
7. Uhlig T, Kvien TK, Jensen JL, Axéll T. Sicca symptoms, saliva and tear production, and disease variables in 636 patients with rheumatoid arthritis. Ann Rheum Dis. 1999; 58:415–422.
8. Yadlapati S, Efthimiou P. Autoimmune/inflammatory arthritis associated lymphomas: who is at risk? BioMed Res Int. 2016; 2016:8631061.
9. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017; 18:716–724.
10. Verstappen GM, Corneth OB, Bootsma H, Kroese FG. Th17 cells in primary Sjögren's syndrome: pathogenicity and plasticity. J Autoimmun. 2018; 87:16–25.
11. Youinou P, Pers JO. Disturbance of cytokine networks in Sjögren's syndrome. Arthritis Res Ther. 2011; 13:227.
12. Mitsdoerffer M, Lee Y, Jäger A, Kim HJ, Korn T, Kolls JK, Cantor H, Bettelli E, Kuchroo VK. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci U S A. 2010; 107:14292–14297.
13. Pfeifle R, Rothe T, Ipseiz N, Scherer HU, Culemann S, Harre U, Ackermann JA, Seefried M, Kleyer A, Uderhardt S, et al. Regulation of autoantibody activity by the IL-23-T
H17 axis determines the onset of autoimmune disease. Nat Immunol. 2017; 18:104–113.
14. Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol. 2008; 9:166–175.
15. Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, Sakihama T, Matsutani T, Negishi I, Nakatsuru S, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003; 426:454–460.
16. Hirota K, Hashimoto M, Yoshitomi H, Tanaka S, Nomura T, Yamaguchi T, Iwakura Y, Sakaguchi N, Sakaguchi S. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17
+ Th cells that cause autoimmune arthritis. J Exp Med. 2007; 204:41–47.
17. Hashimoto M, Hirota K, Yoshitomi H, Maeda S, Teradaira S, Akizuki S, Prieto-Martin P, Nomura T, Sakaguchi N, Köhl J, et al. Complement drives Th17 cell differentiation and triggers autoimmune arthritis. J Exp Med. 2010; 207:1135–1143.
18. Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K, Velasco J, Strutton G, Tran A, Benham H, et al. β-glucan triggers spondylarthritis and Crohn's disease-like ileitis in SKG mice. Arthritis Rheum. 2012; 64:2211–2222.
19. Choi SS, Jang E, Oh YK, Jang K, Cho ML, Park SH, Youn J. Aged sanroque mice spontaneously develop Sjögren's syndrome-like disease. Immune Netw. 2019; 19:e7.
20. Shirasuna K, Sato M, Miyazaki T. A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer. 1981; 48:745–752.
21. Kim YH, Park CK, Back SK, Lee CJ, Hwang SJ, Bae YC, Na HS, Kim JS, Jung SJ, Oh SB. Membrane-delimited coupling of TRPV1 and mGluR5 on presynaptic terminals of nociceptive neurons. J Neurosci. 2009; 29:10000–10009.
22. Miozza V, Sánchez G, Sterin-Borda L, Busch L. Enhancement of carbachol-induced amylase secretion in parotid glands from rats with experimental periodontitis. Arch Oral Biol. 2011; 56:1514–1520.
23. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol. 2004; 558:561–575.
24. Ambudkar IS. Calcium signalling in salivary gland physiology and dysfunction. J Physiol. 2016; 594:2813–2824.
25. Kim JM, Lee SW, Park K. Calcium signaling in salivary secretion. J Korean Dent Sci. 2017; 10:45–52.
26. Jin M, Hwang SM, Davies AJ, Shin Y, Bae JS, Lee JH, Lee EB, Song YW, Park K. Autoantibodies in primary Sjögren's syndrome patients induce internalization of muscarinic type 3 receptors. Biochim Biophys Acta. 2012; 1822:161–167.
27. Dawson LJ, Stanbury J, Venn N, Hasdimir B, Rogers SN, Smith PM. Antimuscarinic antibodies in primary Sjögren's syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 2006; 54:1165–1173.
28. Lilienthal GM, Rahmöller J, Petry J, Bartsch YC, Leliavski A, Ehlers M. Potential of murine IgG1 and human IgG4 to inhibit the classical complement and Fcγ receptor activation pathways. Front Immunol. 2018; 9:958.
29. Appel SH, Elias SB, Chauvin P. The role of acetylcholine receptor antibodies in myasthenia gravis. Fed Proc. 1979; 38:2381–2385.