1. Skirrow MB. Campylobacter enteritis: a “new” disease. BMJ. 1977; 2:9–11.
2. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015; 12:e1001923.
3. Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, Humphrey T, Wigley P.
Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. MBio. 2014; 5:e01364-14.
4. Han Z, Willer T, Pielsticker C, Gerzova L, Rychlik I, Rautenschlein S. Differences in host breed and diet influence colonization by Campylobacter jejuni and induction of local immune responses in chicken. Gut Pathog. 2016; 8:56.
5. Han Z, Willer T, Li L, Pielsticker C, Rychlik I, Velge P, Kaspers B, Rautenschlein S. Influence of the gut microbiota composition on
Campylobacter jejuni colonization in chickens. Infect Immun. 2017; 85:e00380-17.
6. Sahin O, Luo N, Huang S, Zhang Q. Effect of
Campylobacter-specific maternal antibodies on
Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol. 2003; 69:5372–5379.
7. Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME. Identification of
Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol. 2008; 74:6867–6875.
8. Cawthraw S, Ayling R, Nuijten P, Wassenaar T, Newell DG. Isotype, specificity, and kinetics of systemic and mucosal antibodies to
Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis. 1994; 38:341–349.
9. Lacharme-Lora L, Chaloner G, Gilroy R, Humphrey S, Gibbs K, Jopson S, Wright E, Reid W, Ketley J, Humphrey T, et al. B lymphocytes play a limited role in clearance of Campylobacter jejuni from the chicken intestinal tract. Sci Rep. 2017; 7:45090.
10. Van Deun K, Pasmans F, Ducatelle R, Flahou B, Vissenberg K, Martel A, Van den Broeck W, Van Immerseel F, Haesebrouck F. Colonization strategy of
Campylobacter jejuni results in persistent infection of the chicken gut. Vet Microbiol. 2008; 130:285–297.
11. Berndtson E, Danielsson-Tham ML, Engvall A.
Campylobacter incidence on a chicken farm and the spread of
Campylobacter during the slaughter process. Int J Food Microbiol. 1996; 32:35–47.
12. Iovine NM. Innate immunity in Campylobacter infections. In : Nachamkin I, Szymanski CM, Blaser MJ, editors. Campylobacter. 3rd ed. Washington, D.C.: ASM Press;2008. p. 337–344.
13. Bacon DJ, Szymanski CM, Burr DH, Silver RP, Alm RA, Guerry P. A phase-variable capsule is involved in virulence of
Campylobacter jejuni 81-176. Mol Microbiol. 2001; 40:769–777.
14. Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. JlpA, a novel surface-exposed lipoprotein specific to
Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol. 2001; 39:1225–1236.
15. Monteville MR, Yoon JE, Konkel ME. Maximal adherence and invasion of INT 407 cells by
Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology. 2003; 149:153–165.
16. Tu QV, McGuckin MA, Mendz GL.
Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol. 2008; 57:795–802.
17. Stahl M, Vallance BA. Insights into
Campylobacter jejuni colonization of the mammalian intestinal tract using a novel mouse model of infection. Gut Microbes. 2015; 6:143–148.
18. Hu L, Tall BD, Curtis SK, Kopecko DJ. Enhanced microscopic definition of
Campylobacter jejuni 81-176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells. Infect Immun. 2008; 76:5294–5304.
19. Watson RO, Galán JE.
Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog. 2008; 4:e14.
20. Guerrant RL, Wanke CA, Pennie RA, Barrett LJ, Lima AA, O'Brien AD. Production of a unique cytotoxin by
Campylobacter jejuni
. Infect Immun. 1987; 55:2526–2530.
21. Whitehouse CA, Balbo PB, Pesci EC, Cottle DL, Mirabito PM, Pickett CL.
Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun. 1998; 66:1934–1940.
22. O Cróinín T, Backert S. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol. 2012; 2:25.
23. van Spreeuwel JP, Duursma GC, Meijer CJ, Bax R, Rosekrans PC, Lindeman J.
Campylobacter colitis: histological immunohistochemical and ultrastructural findings. Gut. 1985; 26:945–951.
24. Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J Infect Dis. 1988; 157:472–479.
25. Perkins DJ, Newstead GL.
Campylobacter jejuni enterocolitis causing peritonitis, ileitis and intestinal obstruction. Aust N Z J Surg. 1994; 64:55–58.
26. Samie A, Ramalivhana J, Igumbor EO, Obi CL. Prevalence, haemolytic and haemagglutination activities and antibiotic susceptibility profiles of Campylobacter spp. isolated from human diarrhoeal stools in Vhembe District, South Africa. J Health Popul Nutr. 2007; 25:406–413.
27. Endtz HP, Ang CW, van Den Braak N, Duim B, Rigter A, Price LJ, Woodward DL, Rodgers FG, Johnson WM, Wagenaar JA, et al. Molecular characterization of
Campylobacter jejuni from patients with Guillain-Barré and Miller Fisher syndromes. J Clin Microbiol. 2000; 38:2297–2301.
28. McCarthy N, Giesecke J. Incidence of Guillain-Barré syndrome following infection with
Campylobacter jejuni
. Am J Epidemiol. 2001; 153:610–614.
29. Godschalk PC, Kuijf ML, Li J, St Michael F, Ang CW, Jacobs BC, Karwaski MF, Brochu D, Moterassed A, Endtz HP, et al. Structural characterization of
Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barre and Miller Fisher syndromes. Infect Immun. 2007; 75:1245–1254.
30. Houliston RS, Vinogradov E, Dzieciatkowska M, Li J, St Michael F, Karwaski MF, Brochu D, Jarrell HC, Parker CT, Yuki N, et al. Lipooligosaccharide of Campylobacter jejuni: similarity with multiple types of mammalian glycans beyond gangliosides. J Biol Chem. 2011; 286:12361–12370.
31. Apel D, Ellermeier J, Pryjma M, Dirita VJ, Gaynor EC. Characterization of
Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol. 2012; 194:2342–2354.
32. Friis LM, Keelan M, Taylor DE.
Campylobacter jejuni drives MyD88-independent interleukin-6 secretion via Toll-like receptor 2. Infect Immun. 2009; 77:1553–1560.
33. Bouwman LI, de Zoete MR, Bleumink-Pluym NM, Flavell RA, van Putten JP. Inflammasome activation by Campylobacter jejuni
. J Immunol. 2014; 193:4548–4557.
34. Shang Y, Ren F, Song Z, Li Q, Zhou X, Wang X, Xu Z, Bao G, Wan T, Lei T, et al. Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model. Sci Rep. 2016; 6:28737.
35. Svensson L, Wennerås C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect. 2005; 7:720–728.
36. El-Salhy M, Mazzawi T, Gundersen D, Hatlebakk JG, Hausken T. Changes in the symptom pattern and the densities of large-intestinal endocrine cells following Campylobacter infection in irritable bowel syndrome: a case report. BMC Res Notes. 2013; 6:391.
37. Hickey TE, McVeigh AL, Scott DA, Michielutti RE, Bixby A, Carroll SA, Bourgeois AL, Guerry P.
Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun. 2000; 68:6535–6541.
38. Jin S, Song YC, Emili A, Sherman PM, Chan VL. JlpA of
Campylobacter jejuni interacts with surface-exposed heat shock protein 90α and triggers signalling pathways leading to the activation of NF‐κB and p38 MAP kinase in epithelial cells. Cell Microbiol. 2003; 5:165–174.
39. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, Aderem A. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A. 2005; 102:9247–9252.
40. Hu L, Bray MD, Osorio M, Kopecko DJ.
Campylobacter jejuni induces maturation and cytokine production in human dendritic cells. Infect Immun. 2006; 74:2697–2705.
41. Zheng J, Meng J, Zhao S, Singh R, Song W.
Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires
Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-κB. Infect Immun. 2008; 76:4498–4508.
42. de Zoete MR, Keestra AM, Roszczenko P, van Putten JP. Activation of human and chicken Toll-like receptors by
Campylobacter spp. Infect Immun. 2010; 78:1229–1238.
43. O'Hara JR, Feener TD, Fischer CD, Buret AG. Campylobacter jejuni disrupts protective Toll-like receptor 9 signaling in colonic epithelial cells and increases the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun. 2012; 80:1563–1571.
44. Stephenson HN, John CM, Naz N, Gundogdu O, Dorrell N, Wren BW, Jarvis GA, Bajaj-Elliott M.
Campylobacter jejuni lipooligosaccharide sialylation, phosphorylation, and amide/ester linkage modifications fine-tune human Toll-like receptor 4 activation. J Biol Chem. 2013; 288:19661–19672.
45. Stahl M, Ries J, Vermeulen J, Yang H, Sham HP, Crowley SM, Badayeva Y, Turvey SE, Gaynor EC, Li X, et al. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLoS Pathog. 2014; 10:e1004264.
46. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997; 7:837–847.
47. Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A. MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-κB proinflammatory responses. J Biol Chem. 2009; 284:24192–24203.
48. Hickey TE, Baqar S, Bourgeois AL, Ewing CP, Guerry P.
Campylobacter jejuni-stimulated secretion of interleukin-8 by INT407 cells. Infect Immun. 1999; 67:88–93.
49. Mellits KH, Mullen J, Wand M, Armbruster G, Patel A, Connerton PL, Skelly M, Connerton IF. Activation of the transcription factor NF-κB by Campylobacter jejuni
. Microbiology. 2002; 148:2753–2763.
50. Jones MA, Tötemeyer S, Maskell DJ, Bryant CE, Barrow PA, To S. Induction of proinflammatory responses in the human monocytic cell line THP-1 by
Campylobacter jejuni
. Infect Immun. 2003; 71:2626–2633.
51. John DA, Williams LK, Kanamarlapudi V, Humphrey TJ, Wilkinson TS. The bacterial species Campylobacter jejuni induce diverse innate immune responses in human and avian intestinal epithelial cells. Front Microbiol. 2017; 8:1840.
52. Kawai T, Takeuchi O, Fujita T, Inoue J, Mühlradt PF, Sato S, Hoshino K, Akira S. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol. 2001; 167:5887–5894.
53. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002; 169:6668–6672.
54. Nilsen NJ, Vladimer GI, Stenvik J, Orning MP, Zeid-Kilani MV, Bugge M, Bergstroem B, Conlon J, Husebye H, Hise AG, et al. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling. J Biol Chem. 2015; 290:3209–3222.
55. Bakhiet M, Al-Salloom FS, Qareiballa A, Bindayna K, Farid I, Botta GA. Induction of α and β chemokines by intestinal epithelial cells stimulated with
Campylobacter jejuni
. J Infect. 2004; 48:236–244.
56. Hu L, Hickey TE.
Campylobacter jejuni induces secretion of proinflammatory chemokines from human intestinal epithelial cells. Infect Immun. 2005; 73:4437–4440.
57. Johanesen PA, Dwinell MB. Flagellin-independent regulation of chemokine host defense in
Campylobacter jejuni-infected intestinal epithelium. Infect Immun. 2006; 74:3437–3447.
58. Al-Sayeqh AF, Loughlin MF, Dillon E, Mellits KH, Connerton IF.
Campylobacter jejuni activates NF-κB independently of TLR2, TLR4, Nod1 and Nod2 receptors. Microb Pathog. 2010; 49:294–304.
59. Elmi A, Watson E, Sandu P, Gundogdu O, Mills DC, Inglis NF, Manson E, Imrie L, Bajaj-Elliott M, Wren BW, et al.
Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun. 2012; 80:4089–4098.
60. Konkel ME, Samuelson DR, Eucker TP, Shelden EA, O'Loughlin JL. Invasion of epithelial cells by
Campylobacter jejuni is independent of caveolae. Cell Commun Signal. 2013; 11:100.
61. Zilbauer M, Dorrell N, Elmi A, Lindley KJ, Schüller S, Jones HE, Klein NJ, Núnez G, Wren BW, Bajaj-Elliott M. A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to
Campylobacter jejuni
. Cell Microbiol. 2007; 9:2404–2416.
62. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011; 477:596–600.
63. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc. 2012; 134:13535–13537.
64. Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem. 2003; 278:41702–41708.
65. Zilbauer M, Dorrell N, Boughan PK, Harris A, Wren BW, Klein NJ, Bajaj-Elliott M. Intestinal innate immunity to
Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun. 2005; 73:7281–7289.
66. Murphy H, Cogan T, Humphrey T. Direction of neutrophil movements by
Campylobacter-infected intestinal epithelium. Microbes Infect. 2011; 13:42–48.
67. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007; 14:1583–1589.
68. Stahl M, Hoang T, Knodler LA, Vallance B. The first line of defense: the role of epithelial cell inflammasomes in controlling
Campylobacter jejuni infection. J Can Assoc Gastroenterol. 2018; 1:401.
69. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995; 95:55–65.
70. Sun X, Liu B, Sartor RB, Jobin C. Phosphatidylinositol 3-kinase-γ signaling promotes
Campylobacter jejuni-induced colitis through neutrophil recruitment in mice. J Immunol. 2013; 190:357–365.
71. Sørensen NB, Nielsen HL, Varming K, Nielsen H. Neutrophil activation by Campylobacter concisus
. Gut Pathog. 2013; 5:17.
72. Kiehlbauch JA, Albach RA, Baum LL, Chang KP. Phagocytosis of
Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. Infect Immun. 1985; 48:446–451.
73. Wassenaar TM, Engelskirchen M, Park S, Lastovica A. Differential uptake and killing potential of
Campylobacter jejuni by human peripheral monocytes/macrophages. Med Microbiol Immunol (Berl). 1997; 186:139–144.
74. Avril T, Wagner ER, Willison HJ, Crocker PR. Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on
Campylobacter jejuni lipooligosaccharides. Infect Immun. 2006; 74:4133–4141.
75. Purdy D, Cawthraw S, Dickinson JH, Newell DG, Park SF. Generation of a superoxide dismutase (SOD)-deficient mutant of
Campylobacter coli: evidence for the significance of SOD in
Campylobacter survival and colonization. Appl Environ Microbiol. 1999; 65:2540–2546.
76. Keo T, Collins J, Kunwar P, Blaser MJ, Iovine NM.
Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence. 2011; 2:30–40.
77. Walan A, Dahlgren C, Kihlström E, Stendahl O, Lock R. Phagocyte killing of
Campylobacter jejuni in relation to oxidative activation. APMIS. 1992; 100:424–430.
78. Everest P. Campylobacter spp. and the ability to elicit intestinal inflammatory responses. In : Ketley JM, Konkel ME, editors. Campylobacter Molecular and Cellular Biology. Norfolk: Horizon Bioscience;2005. p. 429.
79. Bär W. Role of murine macrophages and complement in experimental Campylobacter infection. J Med Microbiol. 1988; 26:55–59.
80. Hickey TE, Majam G, Guerry P. Intracellular survival of
Campylobacter jejuni in human monocytic cells and induction of apoptotic death by cytholethal distending toxin. Infect Immun. 2005; 73:5194–5197.
81. Heikema AP, Koning RI, Duarte dos Santos Rico S, Rempel H, Jacobs BC, Endtz HP, van Wamel WJ, Samsom JN. Enhanced, sialoadhesin-dependent uptake of Guillain-Barre syndrome-associated
Campylobacter jejuni strains by human macrophages. Infect Immun. 2013; 81:2095–2103.
82. van Sorge NM, Bleumink NM, van Vliet SJ, Saeland E, van der Pol WL, van Kooyk Y, van Putten JP. N-glycosylated proteins and distinct lipooligosaccharide glycoforms of
Campylobacter jejuni target the human C-type lectin receptor MGL. Cell Microbiol. 2009; 11:1768–1781.
83. Day WA Jr, Sajecki JL, Pitts TM, Joens LA. Role of catalase in
Campylobacter jejuni intracellular survival. Infect Immun. 2000; 68:6337–6345.
84. Klaas M, Oetke C, Lewis LE, Erwig LP, Heikema AP, Easton A, Willison HJ, Crocker PR. Sialoadhesin promotes rapid proinflammatory and type I IFN responses to a sialylated pathogen,
Campylobacter jejuni
. J Immunol. 2012; 189:2414–2422.
85. Korneev KV, Kondakova AN, Sviriaeva EN, Mitkin NA, Palmigiano A, Kruglov AA, Telegin GB, Drutskaya MS, Sturiale L, Garozzo D, et al. Hypoacylated LPS from foodborne pathogen Campylobacter jejuni induces moderate TLR4-mediated inflammatory response in murine macrophages. Front Cell Infect Microbiol. 2018; 8:58.
86. Iovine NM, Pursnani S, Voldman A, Wasserman G, Blaser MJ, Weinrauch Y. Reactive nitrogen species contribute to innate host defense against
Campylobacter jejuni
. Infect Immun. 2008; 76:986–993.
87. Bax M, Kuijf ML, Heikema AP, van Rijs W, Bruijns SC, García-Vallejo JJ, Crocker PR, Jacobs BC, van Vliet SJ, van Kooyk Y.
Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. Infect Immun. 2011; 79:2681–2689.
88. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010; 32:593–604.
89. Fehlings M, Drobbe L, Moos V, Renner Viveros P, Hagen J, Beigier-Bompadre M, Pang E, Belogolova E, Churin Y, Schneider T, et al. Comparative analysis of the interaction of
Helicobacter pylori with human dendritic cells, macrophages, and monocytes. Infect Immun. 2012; 80:2724–2734.
90. Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001; 2:361–367.
91. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005; 307:254–258.
92. Hu L, Kopecko DJ.
Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Immun. 1999; 67:4171–4182.
93. Kuijf ML, Samsom JN, van Rijs W, Bax M, Huizinga R, Heikema AP, van Doorn PA, van Belkum A, van Kooyk Y, Burgers PC, et al. TLR4-mediated sensing of
Campylobacter jejuni by dendritic cells is determined by sialylation. J Immunol. 2010; 185:748–755.
94. Huizinga R, van Rijs W, Bajramovic JJ, Kuijf ML, Laman JD, Samsom JN, Jacobs BC. Sialylation of
Campylobacter jejuni endotoxin promotes dendritic cell-mediated B cell responses through CD14-dependent production of IFN-β and TNF-α. J Immunol. 2013; 191:5636–5645.
95. Rathinam VA, Appledorn DM, Hoag KA, Amalfitano A, Mansfield LS.
Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling through Toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes. Infect Immun. 2009; 77:2499–2507.
96. Baqar S, Tribble DR, Carmolli M, Sadigh K, Poly F, Porter C, Larsson CJ, Pierce KK, Guerry P, et al. Campylobacter Study Team. Recrudescent
Campylobacter jejuni infection in an immunocompetent adult following experimental infection with a well-characterized organism. Clin Vaccine Immunol. 2010; 17:80–86.
97. Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M, Neal KR. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute
Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000; 47:804–811.
98. Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y, Hida Y, Oshikiri T, Kurokawa T, Suzuoki M, et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 2003; 63:1555–1559.
99. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, Pons B, Mirey G, Vignard J, Hendrixson DR, et al.
Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 2019; 68:289–300.
100. Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, Dorrell N, Lindley KJ, Wedderburn LR, Bajaj-Elliott M. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One. 2010; 5:e15398.
101. Malik A, Sharma D, St Charles J, Dybas LA, Mansfield LS. Contrasting immune responses mediate
Campylobacter jejuni-induced colitis and autoimmunity. Mucosal Immunol. 2014; 7:802–817.
102. Fimlaid KA, Lindow JC, Tribble DR, Bunn JY, Maue AC, Kirkpatrick BD. Peripheral CD4+ T cell cytokine responses following human challenge and re-challenge with Campylobacter jejuni
. PLoS One. 2014; 9:e112513.
103. Li S, Jin T, Zhang HL, Yu H, Meng F, Concha Quezada H, Zhu J. Circulating Th17, Th22, and Th1 cells are elevated in the Guillain-Barré syndrome and downregulated by IVIg treatments. Mediators Inflamm. 2014; 2014:740947.
104. Bereswill S, Grundmann U, Alutis ME, Fischer A, Kühl AA, Heimesaat MM. Immune responses upon Campylobacter jejuni infection of secondary abiotic mice lacking nucleotide-oligomerization-domain-2. Gut Pathog. 2017; 9:33.
105. Blaser MJ, Hopkins JA, Vasil ML.
Campylobacter jejuni outer membrane proteins are antigenic for humans. Infect Immun. 1984; 43:986–993.
106. Kirimat M, Georges-Courbot MC, Georges AJ, Martin PM. Antibodies to
Campylobacter flagellin recognize epitopes common to phase 1 and phase 2 flagella. Res Microbiol. 1989; 140:645–651.
107. Strid MA, Engberg J, Larsen LB, Begtrup K, Mølbak K, Krogfelt KA. Antibody responses to
Campylobacter infections determined by an enzyme-linked immunosorbent assay: 2-year follow-up study of 210 patients. Clin Diagn Lab Immunol. 2001; 8:314–319.
108. Cawthraw SA, Lind L, Kaijser B, Newell DG. Antibodies, directed towards
Campylobacter jejuni antigens, in sera from poultry abattoir workers. Clin Exp Immunol. 2000; 122:55–60.
109. Cawthraw SA, Feldman RA, Sayers AR, Newell DG. Long-term antibody responses following human infection with
Campylobacter jejuni
. Clin Exp Immunol. 2002; 130:101–106.
110. Lane EM, Batchelor RA, Bourgeois AL, Burr DH, Olson JG. Urine and faecal IgA response during naturally acquired infection with Campylobacter jejuni
. Lancet. 1987; 1:1141.
111. Linton D, Gilbert M, Hitchen PG, Dell A, Morris HR, Wakarchuk WW, Gregson NA, Wren BW. Phase variation of a β-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of
Campylobacter jejuni
. Mol Microbiol. 2000; 37:501–514.
112. Guerry P, Szymanski CM, Prendergast MM, Hickey TE, Ewing CP, Pattarini DL, Moran AP. Phase variation of
Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness
in vitro
. Infect Immun. 2002; 70:787–793.
113. Mooney A, Clyne M, Curran T, Doherty D, Kilmartin B, Bourke B.
Campylobacter upsaliensis exerts a cytolethal distending toxin effect on HeLa cells and T lymphocytes. Microbiology. 2001; 147:735–743.
114. Vaishnavi C, Kapoor P, Behura C, Singh SK, Prabhakar S. C-reactive protein in patients with Guillain Barré syndrome. Indian J Pathol Microbiol. 2014; 57:51–54.
115. Bae JY, Lee DH, Ko KO, Lim JW, Cheon EJ, Song YH, Yoon JM. Clinical manifestation of
Campylobacter enteritis in children. Korean J Pediatr. 2018; 61:84–89.
116. Blaser MJ, Black RE, Duncan DJ, Amer J.
Campylobacter jejuni-specific serum antibodies are elevated in healthy Bangladeshi children. J Clin Microbiol. 1985; 21:164–167.
117. Fernández H, Giusti G, Bertoglio JC. Effect of the complement system on the sensitivity of Campylobacter jejuni and Campylobacter coli to human blood serum. Braz J Med Biol Res. 1995; 28:227–229.
118. Maue AC, Mohawk KL, Giles DK, Poly F, Ewing CP, Jiao Y, Lee G, Ma Z, Monteiro MA, Hill CL, et al. The polysaccharide capsule of
Campylobacter jejuni modulates the host immune response. Infect Immun. 2013; 81:665–672.
119. Blaser MJ, Smith PF, Repine JE, Joiner KA. Pathogenesis of
Campylobacter fetus infections. Failure of encapsulated
Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J Clin Invest. 1988; 81:1434–1444.