1. McMurray DN. Mycobacteria and nocardia. Medical Microbiology 4th edition: University of Texas Medical Branch at Galveston. 1996.
2. Hess S, Rambukkana AJMs. Cell biology of intracellular adaptation of
Mycobacterium leprae in the peripheral nervous system. Microbiol Spectr. 2019; 7(4):
3. Martinez AN, Lahiri R, Pittman TL, Scollard D, Truman R, Moraes MO, et al. Molecular determination of
Mycobacterium leprae viability by use of real-time PCR. J Clin Microbiol. 2009; 47(7):2124–2130.
4. Lahiri R, Randhawa B, Krahenbuhl JJJomm. Application of a viability-staining method for
Mycobacterium leprae derived from the athymic (nu/nu) mouse foot pad. J Med Microbiol. 2005; 54(Pt 3):235–242.
5. Levy L, Ji BJLr. The mouse foot-pad technique for cultivation of Mycobacterium leprae. Lepr Rev. 2006; 77(1):5.
6. Yan W, Xing Y, Yuan LC, De Yang R, Tan FY, Zhang Y, et al. Application of RLEP real-time PCR for detection of M. leprae DNA in paraffin-embedded skin biopsy specimens for diagnosis of paucibacillary leprosy. Am J Trop Med Hyg. 2014; 90(3):524–529.
7. Kim JP, Kim YS, Kim CW. Evaluation of Propidium Monoazide Real-Time PCR for Viablity of Mycobacterium leprae. Korean Lepr Bull. 2016; 49(1):13–22.
8. Kim S, Lee S, Kim E, Seo D, Song Y, Jung I. Selective detection of viable enterococcus faecalis using propidium monoazide in combination with real-time PCR. J Korean Acad Conserv Dent. 2008; 33(6):537–544.
9. Nocker A, Sossa-Fernandez P, Burr MD, Camper AKJAEM. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007; 73(16):5111–5117.
10. Fittipaldi M, Nocker A, Codony FJJomm. Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. J Microbiol Methods. 2012; 91(2):276–289.
11. Trombone AP, Pedrini SC, Diorio SM, Belone Ade F, Fachin LR, do Nascimento DC, et al. Optimized protocols for
Mycobacterium leprae strain management: frozen stock preservation and maintenance in athymic nude mice. Journal of visualized experiments : JoVE. J Vis Exp. 2014; 03. 23(85):DOI:
10.3791/50620. PubMed PMID: 24686247; PubMed Central PMCID: PMC4155980.
12. Nocker A, Sossa KE, Camper AKJJomm. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Methods. 2007; 70(2):252–260.
13. Ditommaso S, Giacomuzzi M, Memoli G, Cavallo R, Curtoni A, Avolio M, et al. Reduction of turnaround time for non-tuberculous mycobacteria detection in heater-cooler units by propidium monoazide-real-time polymerase chain reaction. J Hosp Infect. In press 2019.
14. Batista-Silva L, Rodrigues LS, de Carvalho Vivarini A, Costa FdMR, De Mattos KA, Costa MRSN, et al.
Mycobacterium leprae-induced Insulin-like Growth Factor I attenuates antimicrobial mechanisms, promoting bacterial survival in macrophages. Sci Rep. 2016; 6:27632.
15. Silva CA, Danelishvili L, McNamara M, Berredo-Pinho M, Bildfell R, Biet F, et al. Interaction of
Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis. Infect Immun. 2013; 81(7):2645–2659.
16. Tanigawa K, Suzuki K, Nakamura K, Akama T, Kawashima A, Wu H, et al. Expression of adipose differentiation-related protein (ADRP) and perilipin in macrophages infected with
Mycobacterium leprae. FEMS Microbiol Lett. 2008; 289(1):72–79.
17. Fukutomi Y, Matsuoka M, Minagawa F, Toratani S, McCormick G, Krahenbuhl JJIjol, et al. IL-10 treatment of macrophages bolsters intracellular survival of
Mycobacterium leprae. Int J Lepr Other Mycobact Dis. 2004; 72:16–26.
18. Kim YJ, Lee SM, Park BK, Kim SS, Yi J, Kim HH, et al. Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens. Ann Lab Med. 2014; 34(3):203–209.