Journal List > J Korean Soc Radiol > v.80(2) > 1138878

Kwon, Choi, and Jung: Medical Institutions' Adherence to the PI-RADS v2Minimum Technical Standards for Prostate MRI in Korea

Abstract

Purpose

To evaluate the adherence rate to Prostate Imaging-Reporting and Data System version 2 (PI-RADS v2) minimum technical standards of prostate magnetic resonance imaging (MRI) in Korean medical institutions.

Materials and Methods

This study included 103 prostate MRI examinations from 85 outside medical institutions performed from March 2015 to January 2018. The difference in adherence rate to minimal technical standards of PI-RADS v2 was compared using a Fisher's exact test between subgroups divided by the magnetic strength of MRI machine, type of medical institution and presence of genitourinary radiologist.

Results

Diffusion-weighted imaging (DWI) was obtained frequently in examinations performed in a 3-T machine, in university hospitals and in medical institutions where genitourinary radiologist work in than the others (p < 0.001,p < 0.001,p = 0.003). Many minimum technical standards of PI-RADS v2 showed significantly lower adherence rate in a 1.5-T machine, in a non-university hospital and in a medical institution without genitourinary radiologist than the others.

Conclusion

The frequency of obtaining DWI and the adherent rate to some of the PI-RADS v2 minimum technical standards were significantly higher in 3-T machines, university hospitals and medical institutions with a genitourinary radiologist.

References

1. Han HH, Park JW, Na JC, Chung BH, Kim CS, Ko WJ. Epidemiology of prostate cancer in South Korea. Prost ate Int. 2015; 3:99–102.
crossref
2. Arumainayagam N, Ahmed HU, Moore CM, Freeman A, Allen C, Sohaib SA, et al. Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard.Radiology. 2013; 268:761–769.
3. de Rooij M, Hamoen EH, Futterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a metaanalysis. AJR Am J Roentgenol. 2014; 202:343–351.
crossref
4. Shukla-Dave A, Hricak H. Role of MRI in prostate cancer detection.NMR Biomed. 2014; 27:16–24.
5. Dickinson L, Ahmed HU, Allen C, Barentsz JO, Carey B, Futterer JJ, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011; 59:477–494.
crossref
6. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging – Reporting and data system: 2015, Version 2. Eur Urol. 2016; 69:16–40.
crossref
7. Esses SJ, Taneja SS, Rosenkrantz AB. Imaging facilities'adherence to PI-RADS v2 minimum technical standards for the performance of prostate MRI. Acad Rad/iiol. 2018; 25:188–195.
8. Delongchamps NB, Rouanne M, Flam T, Beuvon F, Liberatore M, Zerbib M, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011; 107:1411–1418.
crossref
9. Ren J, Yang Y, Zhang J, Xu J, Liu Y, Wei M, et al. T(2)-weighted combined with diffusion-weighted images for evaluating prostatic transition zone tumors at 3 Tesla. Future Oncol. 2013; 9:585–593.
crossref
10. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology. 2010; 255:89–99.
11. Jyoti R, Jain TP, Haxhimolla H, Liddell H, Barrett SE. Correlation of apparent diffusion coefficient ratio on 3.0T MRI with prostate cancer Gleason score. Eur J Radiol Open. 2018; 5:58–63.
crossref
12. Sokmen BK, Sokmen D, Ucar N, Ozkurt H, Simsek A. The correlation between biological activity and diffusion-weighted MR imaging and ADC value in cases with prostate cancer.Arch Ital Urol Androl. 2017; 89:277–281.
13. Woo S, Kim SY, Cho JY, Kim SH. Preoperative evaluation of prostate cancer aggressiveness: using ADC and ADC ratio in determining Gleason score. AJR Am J Roentgenol. 2016; 207:114–120.
crossref
14. Kitajima K, Takahashi S, Ueno Y, Yoshikawa T, Ohno Y, Obara M, et al. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultrahigh b-value (2000 s/mm2) and standard high b-value (1000 s/mm2).J Magn Reson Imaging. 2012; 36:198–205.
15. Tamada T, Kanomata N, Sone T, Jo Y, Miyaji Y, Higashi H, et al. High b value (2000 s/mm) diffusion-weighted magnetic resonance imaging in prostate cancer at 3 Tesla: comparison with 1000 s/mm2 for tumor conspicuity and discrimination of aggressiveness. PLoS One. 2014; 9:e96619.
16. Fennessy FM, Fedorov A, Penzkofer T, Kim KW, Hirsch MS, Vangel MG, et al. Quantitative pharmacokinetic analysis of prostate cancer DCE-MRI at 3T: comparison of two arterial input functions on cancer detection with digitized whole mount histopathological validation.Magn Reson Imaging. 2015; 33:886–894.
17. Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, Van Leenders GJ, Hulsbergen-Van De Kaa CA, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003; 229:248–254.
crossref
18. Bigler SA, Deering RE, Brawer MK. Comparison of microscopic vascularity in benign and malignant prostate tissue.Hum Pathol. 1993; 24:220–226.
19. Nicholson B, Schaefer G, Theodorescu D. Angiogenesis in prostate cancer: biology and therapeutic opportunities. Cancer Metastasis Rev. 2001; 20:297–319.
crossref
20. Siegal JA, Yu E, Brawer MK. Topography of neovascularity in human prostate carcinoma.Cancer. 1995; 75:2545–2551.
21. Di Campli E, Delli Pizzi A, Seccia B, Cianci R, D'Annibale M, Colasante A, et al. Diagnostic accuracy of biparamet-ric vs multiparametric MRI in clinically significant prostate cancer: comparison between readers with different experience. Eur J Radiol. 2018; 101:17–23.
crossref
22. Jambor I, Kähkönen E, Taimen P, Merisaari H, Saunavaara J, Alanen K, et al. Prebiopsy multiparametric 3T prostate MRI in patients with elevated PSA, normal digital rectal examination, and no previous biopsy.J Magn Reson Imaging. 2015; 41:1394–1404.
23. Pahwa S, Schiltz NK, Ponsky LE, Lu Z, Griswold MA, Gulani V. Cost-effectiveness of MR imaging-guided strategies for detection of prostate cancer in biopsy-naive men.Radiology. 2017; 285:157–166.
24. Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE, et al. Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer.J Magn Reson Imaging. 2013; 37:1035–1054.

Table 1.
Characteristics of Medical Institutions and Machines in This Study
  Number (Percentage)
Types of medical institutions
 Clinic 6 (5.8)
 Hospital 3 (2.9)
 General hospital 29 (28.2)
 University hospital 65 (63.1)
Number of radiologists
 1 15 (14.6)
 2–8 30 (29.1)
 9–16 28 (27.2)
 ≥ 17 30 (29.1)
Genitourinary radiologist
 Absence 62 (60.2)
 Presence 41 (39.8)
Number of machines per institution
 1 74 (87.1)
 2 5 (5.9)
 3 5 (5.9)
 4 1 (1.1)
Vendor
 Philips healthcare 45 (43.7)
 Siemens healthineers 38 (36.9)
 GE healthcare 13 (12.6)
 Canon medical systems 7 (6.8)
Magnetic field strength
 1.5T 31 (30.1)
 3.0T 72 (69.9)
Contrast-enhancement
 No contrast-enhancement 10 (9.7)
 Dynamic contrast-enhancement 53 (51.5)
 Multiphase contrast-enhancement 28 (27.2)
 Single phase contrast-enhancement 12 (11.7)
Table 2.
Differences in Proportion of MRIs Obtaining Essential Sequences
  Magnetic Strength University Hospital GU Radiologist
3.0T (n = 72) 1.5T (n = 31) p-Value Yes (n = 65) No (n = 38) p-Value Presence (n = 41) Absence (n = 62) p-Value
T2WI, three plane 68 (94.4) 29 (93.5) 1.000 62 (95.4) 35 (92.1) 0.667 39 (95.1) 58 (93.5) 1.000
DWI 71 (98.6) 20 (64.5) < 0.001 65 (100) 26 (68.4) < 0.001 41 (100.0) 50 (80.6) 0.003
DCEI 42 (58.3) 11 (35.5) 0.052 36 (55.4) 17 (44.7) 0.315 27 (65.9) 26 (41.9) 0.026

Data is presented as number (percentage).

DCEI = dynamic contrast-enhanced imaging, DWI = diffusion-weighted imaging, GU = genitourinary, MRI = magnetic resonance imaging, T2WI = T2-weighted imaging

Table 3.
Differences in Adherence Rate to PI-RADS v2 according to Magnetic Strength of MRI Machines
Parameters Recommendation 3.0T (n = 72) 1.5T (n = 31) p-Value
T2WI
 Thickness 3 mm 56 (77.8) 20 (64.5) 0.221
 Interslice gap No gap 67 (93.1) 30 (96.8) 0.665
 FOV (frequency) 12–20 cm 56 (77.8) 20 (64.5) 0.221
 FOV (phase) 12–20 cm 58 (80.6) 21 (67.7) 0.204
 In plane resolution (frequency) ≤ 0.4 mm 63 (87.5) 30 (96.8) 0.275
 In plane resolution (phase) ≤ 0.7 mm 51 (70.8) 6 (19.4) < 0.001
Diffusion-weighted imaging
 Location of slice Match or similar to T2W 41 (58.6) 5 (25.0) 0.011
 TR ≥ 3000 msec 66 (94.3) 17 (85.0) 0.181
 TE ≤ 90 msec 61 (87.1) 16 (80.0) 0.475
 Thickness ≤ 4 mm 64 (91.4) 16 (80.0) 0.220
 Thickness Interslice gap ≤ 4 mm No gap 64 (91.4) 32 (45.7) 16 (80.0) 5 (25.0) 0.220 0.125
 Interslice gap FOV (frequency) No gap 16–22 cm 32 (45.7) 50 (71.4) 5 (25.0) 4 (20.0) 0.125 < 0.001
 FOV (phase) 16–22 cm 51 (72.9) 5 (25.0) < 0.001
 In plane resolution (frequency) ≤ 2.5 mm 67 (95.7) 16 (80.0) 0.041
 In plane resolution (phase) ≤ 2.5 mm 66 (94.3) 14 (70.0) 0.007
 High b-value 800–1000 sec/mm2 64 (91.4) 15 (75.0) 0.062
 Additional high b-value ≥ 1400 sec/mm2 6 (8.6) 0 (0) 0.331
 Low b-value 50–100 sec/mm2 27 (38.6) 7 (35.0) 1.000
Dynamic contrast-enhanced imaging
 Location of slice Match or similar to T2W 13 (31.0) 6 (54.5) 0.173
 TR < 100 msec 42 (100) 11 (100)
 TR TE < 100 msec < 5 msec 42 (100) 38 (90.5) 11 (100) 4 (36.4) – 0.001
 Thickness 3 mm 37 (88.1) 3 (27.3) < 0.001
 Interslice gap No gap 14 (33.3) 6 (54.5) 0.296
 In plane resolution ≤ 2 mm × ≤ 2 mm 42 (100) 11 (100)

Data is presented as number (percentage). FOV = field of view, MRI = magnetic resonance imaging, PI-RADS v2 = Prostate Imaging-Reporting and Data System version 2, TE = echo time, TR = repetition time, T2WI = T2-weighted imaging

Table 4.
Differences in Adherence Rate to PI-RADS v2 between University and Non-University Hospital
Parameters Recommendation University Hospital (n = 65) Non-University Hospital (n = 38) p-Value
T2WI
 Thickness 3 mm 48 (73.8) 28 (73.7) 1.000
 Thickness Interslice gap 3 mm No gap 48 (73.8) 60 (92.3) 28 (73.7) 37 (97.4) 1.000 0.409
 FOV (frequency) 12–20 cm 51 (78.5) 25 (65.8) 0.171
 FOV (phase) 12–20 cm 54 (83.1) 25 (65.8) 0.056
 In plane resolution (frequency) ≤ 0.4 mm 58 (89.2) 35 (92.1) 0.742
 In plane resolution (phase) ≤ 0.7 mm 45 (69.2) 12 (31.6) < 0.001
Diffusion-weighted imaging
 Location of slice Match or similar to T2WI 36 (56.3) 10 (38.5) 0.164
 TR ≥ 3000 msec 59 (92.2) 24 (92.3) 1.000
 TE ≤ 90 msec 56 (87.5) 21 (80.8) 0.510
Thickness ≤ 4 mm 57 (89.1) 23 (88.5) 1.000
 Interslice gap No gap 28 (42.2) 10 (38.5) 0.816
 FOV (frequency) 16–22 cm 43 (67.2) 11 (42.3) 0.035
 FOV (phase) 16–22 cm 44 (68.8) 12 (46.2) 0.057
 In plane resolution (frequency) ≤ 2.5 mm 61 (95.3) 22 (84.6) 0.186
 In plane resolution (phase) ≤ 2.5 mm 59 (92.2) 21 (80.8) 0.145
 High b-value 800–1000 sec/mm2 59 (92.2) 20 (76.9) 0.072
 Additiaonl high b-value ≥ 1400 sec/mm2 5 (7.8) 1 (3.8) 0.668
 Low b-value 50–100 sec/mm2 24 (37.5) 10 (38.5) 1.000
Dynamic contrast-enhanced imaging
 Location of slice Match or similar to T2WI 10 (27.8) 9 (2.9) 0.124
 TR < 100 msec 36 (100) 17 (100)
 TE < 5 msec 32 (88.9) 10 (58.8) 0.025
Thickness 3 mm 30 (83.3) 10 (58.8) 0.086
 Interslice gap No gap 12 (33.3) 8 (47.1) 0.375
 Interslice gapIn plane resolution No gap ≤ 2 mm × ≤ 2 mm 12 (33.3) 36 (100) 8 (47.1) 17 (100) 0.375 −

Data is presented as number (percentage). FOV = field of view, PI-RADS v2 = Prostate Imaging-Reporting and Data System version 2, TE = echo time, TR = repetition time, T2WI = T2-weighted imaging

Table 5.
Differences in Adherence Rate to PI-RADS v2 according to whether GU Radiologist Is Present or Absent
Parameters Recommendation Presence (n = 41) Absence (n = 62) p-Value
T2WI
 Thickness 3 mm 32 (78.0) 44 (71.0) 0.497
 Interslice gap No gap 39 (95.1) 58 (93.5) 1.000
 FOV (frequency) 12–20 cm 35 (85.4) 41 (66.1) 0.039
 FOV (phase) 12–20 cm 35 (85.4) 44 (71.0) 0.102
 In plane resolution (frequency) ≤ 0.4 mm 36 (87.8) 57 (91.9) 0.514
 In plane resolution (phase) ≤ 0.7 mm 29 (70.7) 28 (45.2) 0.015
Diffusion-weighted imaging
 Location of slice Match or similar to T2WI 27 (67.5) 19 (38.0) 0.006
 TR ≥ 3000 msec 36 (90.0) 47 (94.0) 0.695
 TE ≤ 90 msec 37 (92.5) 40 (80.0) 0.113
 Thickness ≤ 4 mm 36 (90.0) 44 (88.0) 1.000
 Thickness Interslice gap ≤ 4 mm No gap 36 (90.0) 21 (52.5) 44 (88.0) 16 (32.0) 1.000 0.056
 Interslice gap FOV (frequency) No gap 16–22 cm 21 (52.5) 31 (77.5) 16 (32.0) 23 (46.0) 0.056 0.003
 FOV (phase) 16–22 cm 31 (77.5) 25 (50.0) 0.009
 In plane resolution (frequency) ≤ 2.5 mm 39 (97.5) 44 (88.0) 0.127
 In plane resolution (phase) ≤ 2.5 mm 38 (95.0) 42 (84.0) 0.175
 High b-value 800–1000 sec/mm2 3 (7.5) 3 (6.0) 1.000
 Additional high b-value ≥ 1400 sec/mm2 35 (87.5) 44 (88.0) 1.000
 Low b-value 50–100 sec/mm2 21 (52.5) 13 (26.0) 0.016
Dynamic contrast-enhanced imaging
 Location of slice Match or similar to T2WI 10 (37.0) 9 (34.6) 1.000
 TR < 100 msec 27 (100) 26 (100)
 TE < 5 msec 25 (92.6) 17 (65.4) 0.019
 Thickness 3 mm 24 (88.9) 16 (61.5) 0.028
 Interslice gap No gap 7 (25.9) 13 (50.0) 0.093
 In plane resolution ≤ 2 mm × ≤ 2 mm 27 (100) 26 (100)

Data is presented as number (percentage). FOV = field of view, GU = genitourinary, PI-RADS v2 = Prostate Imaging-Reporting and Data System version 2, TE = echo time, TR = repetition time, T2WI = T2-weighted imaging

TOOLS
Similar articles