1. Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, Li M. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol. 2017; 7:127.
2. Pereira UP, Oliveira DG, Mesquita LR, Costa GM, Pereira LJ. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: a systematic review. Vet Microbiol. 2011; 148:117–124.
3. Joshi S, Mumtaz S, Singh J, Pasha S, Mukhopadhyay K. Novel miniature membrane active lipopeptidomimetics against planktonic and biofilm embedded methicillin-resistant Staphylococcus aureus. Sci Rep. 2018; 8:1021.
4. Kong C, Chee CF, Richter K, Thomas N, Abd Rahman N, Nathan S. Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci Rep. 2018; 8:2758.
5. Li J, Feßler AT, Jiang N, Fan R, Wang Y, Wu C, Shen J, Schwarz S. Molecular basis of rifampicin resistance in multiresistant porcine livestock-associated MRSA. J Antimicrob Chemother. 2016; 71:3313–3315.
6. Oliveira D, Borges A, Simões M.
Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins (Basel). 2018; 10:252.
7. Wang W, Baloch Z, Jiang T, Zhang C, Peng Z, Li F, Fanning S, Ma A, Xu J. Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Front Microbiol. 2017; 8:2256.
8. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int. 2014; 2014:827965.
9. Wu S, Duan N, Gu H, Hao L, Ye H, Gong W, Wang Z. A review of the methods for detection of
Staphylococcus aureus enterotoxins. Toxins (Basel). 2016; 8:176.
10. Wu S, Huang J, Wu Q, Zhang F, Zhang J, Lei T, Chen M, Ding Y, Xue L. Prevalence and characterization of Staphylococcus aureus isolavitroted from retail vegetables in China. Front Microbiol. 2018; 9:1263.
11. Nazari R, Godarzi H, Rahimi Baghi F, Moeinrad M. Enterotoxin gene profiles among Staphylococcus aureus isolated from raw milk. Majallah-i Tahqiqat-i Dampizishki-i Iran. 2014; 15:409–412.
12. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP. Comparative characterisation of genotypically different clones of MRSA in the production of biofilms. J Biomed Biotechnol. 2012; 2012:417247.
13. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by
staphylococci
. APMIS. 2007; 115:891–899.
14. Atshan SS, Shamsudin MN, Karunanidhi A, van Belkum A, Lung LT, Sekawi Z, Nathan JJ, Ling KH, Seng JS, Ali AM, Abduljaleel SA, Hamat RA. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant
Staphylococcus aureus (MRSA). Infect Genet Evol. 2013; 18:106–112.
15. Corredor Arias LF, Luligo Espinal JS, Moncayo Ortiz JI, Santacruz Ibarra JJ, Álvarez Aldana A. Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colomb Med (Cali). 2016; 47:15–20.
16. Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y.
In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int J Gen Med. 2018; 11:25–32.
17. Gogoi-Tiwari J, Williams V, Waryah CB, Costantino P, Al-Salami H, Mathavan S, Wells K, Tiwari HK, Hegde N, Isloor S, Al-Sallami H, Mukkur T. Mammary gland pathology subsequent to acute infection with strong versus weak biofilm forming Staphylococcus aureus bovine mastitis isolates: a pilot study using non-invasive mouse mastitis model. PLoS One. 2017; 12:e0170668.
18. Gogoi-Tiwari J, Williams V, Waryah CB, Eto KY, Tau M, Costantino P, Tiwari HK, Mukkur T. Comparative studies of the immunogenicity and protective potential of biofilm vs planktonic
Staphylococcus aureus vaccine against bovine mastitis using non-invasive mouse mastitis as a model system. Biofouling. 2015; 31:543–554.
19. Namvar AE, Asghari B, Ezzatifar F, Azizi G, Lari AR. Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS Hyg Infect Control. 2013; 8:Doc03.
20. Shin K, Yun Y, Yi S, Lee HG, Cho JC, Suh KD, Lee J, Park J. Biofilm-forming ability of
Staphylococcus aureus strains isolated from human skin. J Dermatol Sci. 2013; 71:130–137.
21. Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; 121:1–51.
22. Götz F. Staphylococcus and biofilms. Mol Microbiol. 2002; 43:1367–1378.
23. Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol. 2013; 8:509–524.
24. Scaletsky IC, Souza TB, Aranda KR, Okeke IN. Genetic elements associated with antimicrobial resistance in enteropathogenic
Escherichia coli (EPEC) from Brazil. BMC Microbiol. 2010; 10:25.
25. Howlin RP, Brayford MJ, Webb JS, Cooper JJ, Aiken SS, Stoodley P. Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimicrob Agents Chemother. 2015; 59:111–120.
26. Moormeier DE, Bose JL, Horswill AR, Bayles KW. Temporal and stochastic control of Staphylococcus aureus biofilm development. MBio. 2014; 5:e01341–e14.
27. O'Gara JP. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 2007; 270:179–188.
28. Otto M.
Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013; 64:175–188.
29. Vandecasteele SJ, Peetermans WE, R Merckx R, Rijnders BJ, Van Eldere J. Reliability of the ica, aap and atlE genes in the discrimination between invasive, colonizing and contaminant Staphylococcus epidermidis isolates in the diagnosis of catheter-related infections. Clin Microbiol Infect. 2003; 9:114–119.
30. Waryah CB, Gogoi-Tiwari J, Wells K, Eto KY, Masoumi E, Costantino P, Kotiw M, Mukkur T. Diversity of virulence factors associated with west Australian methicillin-sensitive Staphylococcus aureus isolates of human origin. BioMed Res Int. 2016; 2016:8651918.
31. O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O'Gara JP. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol. 2007; 45:1379–1388.
32. O'Neill E, Humphreys H, O'Gara JP. Carriage of both the fnbA and fnbB genes and growth at 37 degrees C promote FnBP-mediated biofilm development in meticillin-resistant Staphylococcus aureus clinical isolates. J Med Microbiol. 2009; 58:399–402.
33. Wang D, Zhang L, Yong C, Shen M, Ali T, Shahid M, Han K, Zhou X, Han B. Relationships among superantigen toxin gene profiles, genotypes, and pathogenic characteristics of
Staphylococcus aureus isolates from bovine mastitis. J Dairy Sci. 2017; 100:4276–4286.
34. Jain A, Agarwal A. Biofilm production, a marker of pathogenic potential of colonizing and commensal
staphylococci. J Microbiol Methods. 2009; 76:88–92.
35. Kosikowska U, Korona-Głowniak I, Niedzielski A, Malm A. Nasopharyngeal and adenoid colonization by Haemophilus influenzae and Haemophilus parainfluenzae in children undergoing adenoidectomy and the ability of bacterial isolates to biofilm production. Medicine (Baltimore). 2015; 94:e799.
36. Wood TK. Biofilm dispersal: deciding when it is better to travel. Mol Microbiol. 2014; 94:747–750.
37. Huseby MJ, Kruse AC, Digre J, Kohler PL, Vocke JA, Mann EE, Bayles KW, Bohach GA, Schlievert PM, Ohlendorf DH, Earhart CA. Beta toxin catalyzes formation of nucleoprotein matrix in
staphylococcal biofilms. Proc Natl Acad Sci U S A. 2010; 107:14407–14412.
38. Li Y, Petrova OE, Su S, Lau GW, Panmanee W, Na R, Hassett DJ, Davies DG, Sauer K. BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa
. PLoS Pathog. 2014; 10:e1004168.
39. Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. BdlA, a chemotaxis regulator essential for biofilm dispersion in
Pseudomonas aeruginosa
. J Bacteriol. 2006; 188:7335–7343.
40. Perez-Soto N, Moule L, Crisan DN, Insua I, Taylor-Smith LM, Voelz K, Fernandez-Trillo F, Krachler AM. Engineering microbial physiology with synthetic polymers: cationic polymers induce biofilm formation in
Vibrio cholerae and downregulate the expression of virulence genes. Chem Sci (Camb). 2017; 8:5291–5298.