Journal List > Anat Biol Anthropol > v.32(3) > 1137296

Lee, Adhikari, Jung, An, Kim, and Kim: Application of Developmental Principles for Functional Regeneration of Salivary Glands

Abstract

Currently, there has been rapid increase in the studies about salivary production because of the hyposalivation, xerostomia, caused by radiotherapy for head and neck cancer, Sjogren syndrome and aging. An overview of anatomy and development of salivary gland is crucial to understand about the patho-physiological disorders related with saliva. For study of the morphogenesis and development of salivary glands, experiment using rodent models is widely necessary. This review wraps up the early to latest studies – the different features of each salivary gland, morphogenesis of developing salivary glands, and the comparison of human and rodent salivary glands. The goal of this review is to provide hypothesis for the further researches about differentiation of specific acinar cells, from which it is determined to be specific acini. Additionally, we discuss approaches to regenerate the function of salivary glands using environmental factor, time dependent factor and nerve factor.

References

1. Holmberg KV, Hoffman MP. Anatomy, biogenesis, and regeneration of salivary glands. Monogr Oral Sci. 2014; 24:1–13.
crossref
2. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007; 18:237–44.
crossref
3. Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, et al. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys. 2010; 78:983–91.
crossref
4. Featherstone JD. The science and practice of caries prevention. J Am Dent Assoc. 2000; 131:887–99.
crossref
5. Nanci A. Salivary glands. Ten Cate's Oral Histology: Devel-pment, Structure, and Function. 8 th ed. St. Louis: Mosby;2012. pp.p. 253–77.
6. De Almeida. Vigna PD, Gregio AM, Machado MA, De Lima AA, Azevedo LR. Saliva composition and functions: a comprehensive review. J Contemp Dent Pract. 2008; 9:72–80.
7. Zhang H, Boddupally K, Kandyba E, Kobielak K, Chen Y, Zu S, et al. Defining the localization and molecular characteristic of minor salivary gland label retaining cells. Stem Cells. 2014; 32:2267–77.
8. Sreebny L. Xerostomia: diagnosis, management and clinical complications. Saliva and Oral Health. 1996. 45–50.
9. Fox PC. Acquired salivary dysfunction. Drugs and radiation. Ann N Y Acad Sci. 1998; 842:132–7.
crossref
10. Burlage FR, Coppes R, Meertens H, Stokman M, Vissink A. Parotid and submandibular/sublingual salivary flow during high dose radiotherapy. Radiother Oncol. 2001; 61:271–4.
crossref
11. Hand AR, Pathmanathan D, Field RB. Morphological features of the minor salivary glands. Arch Oral Biol. 1999; 44:S3–10.
crossref
12. Riva A, Puxeddu R, Uras L, Loy F, Serreli S, Testa Riva F. A high resolution sem study of human minor salivary glands. Eur J Morphol. 2000; 38:219–26.
crossref
13. Tabak LA, Levine MJ, Mandel ID, Ellison SA. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982; 11:1–17.
crossref
14. Mandel ID. The functions of saliva. J Dent Res. 1987; 66:623–7.
crossref
15. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000; 11:216–29.
crossref
16. Chiego DJ, Daniel J. Essentials of Oral Histology and Embryology: A Clinical Approach. 4th ed.St. Louis: Mosby;2013. pp.p. 184–95.
17. Bialek EJ, Jakubowski W, Zajkowski P, Szopinski KT, Os-molski A. US of the major salivary glands: anatomy and spatial relationships, pathologic conditions, and pitfalls. Radiographics. 2006; 26:745–63.
crossref
18. Abdullah A, Rivas FFR, Srinivasan A. Imaging of the Salivary Glands. Semin Roentgenol. 2013; 48:65–74.
crossref
19. Saracco CG, Crabill E. Anatomy of the human salivary glands. Biology of the salivary glands. Boca Raton: CRC Press. Inc. 1993. pp.1–14.
20. Amano O, Mizobe K, Bando Y, Sakiyama K. Anatomy and histology of rodent and human major salivary glands. Acta Histochem Cytochem. 2012; 45:241–50.
21. Jaskoll T, Melnick M. Submandibular gland morphogenesis: Stage-specific expression of TGF-α/EGF, IGF, TGF-β, TNF, and IL-6 signal transduction in normal embryonic mice and the phenotypic effects of TGF-β2, TGF-β3, and EGF-r null mutations. The Anat Rec. 1999; 256:252–68.
crossref
22. Westmuckett AD, Siefert JC, Tesiram YA, Pinson DM, Moore KL. Salivary gland hypofunction in tyrosylprotein sulfotransferase-2 knockout mice is due to primary hypothyroidism. PLoS One. 2013; 8:e71822.
crossref
23. Hauser BR, Hoffman MP. Regulatory Mechanisms Driving Salivary Gland Organogenesis. Curr Top Dev Biol. 2015; 115:111–30.
crossref
24. Harunaga J, Hsu JC, Yamada KM. Dynamics of salivary gland morphogenesis. J Dent Res. 2011; 90:1070–7.
crossref
25. Amano O. The salivary gland: anatomy for surgeons and researchers. Jpn J Oral Maxillofac Surg. 2011; 57:384–93.
crossref
26. Jonjic S. Surgical removal of mouse salivary glands. Curr Protoc Immunol. 2001 Aug.doi:. DOI: 10.1002/0471142735. im0111s43.
27. Gresik EW. The granular convoluted tubule (GCT) cell of rodent submandibular glands. Microsc Res Tech. 1994; 27:1–24.
crossref
28. Lu C, Fuchs E. Sweat Gland Progenitors in Development, Homeostasis, and Wound Repair. Cold Spring Harb Perspect Med. 2014 Feb 1.doi:. DOI: 10.1101/cshperspect.a015222.
29. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012; 1:533–57.
crossref
30. Schaller M, Plewig G. Structure and function of eccrine, apocrine, apoeccrine and sebaceous glands. Dermatology. 2003; 1:525–30.
31. Eroschenko VP, Di Fiore MS. DiFiore's atlas of histology with functional correlations. Lippincott Williams & Wilkins;2013. pp.p. 451–76.
32. Junqueira LC, Carneiro J. Basic histology: text and atlas. New York: McGraw-Hill Professional;2005. pp.p. 205–22.
33. Patel VN, Rebustini IT, Hoffman MP. Salivary gland branching morphogenesis. Differentiation. 2006; 74:349–64.
crossref
34. Knox SM, Lombaert IM, Haddox CL, Abrams SR, Cotrim A, Wilson AJ, et al. Parasympathetic stimulation improves epithelial organ regeneration. Nat Commun. 2013; 4:1494.
crossref
35. Sakai T. Development and regeneration of salivary gland toward for clinical application. Oral Science International. 2016; 13:7–14.
crossref
36. Melnick M, Jaskoll T. Mouse submandibular gland morphogenesis: a paradigm for embryonic signal processing. Crit Rev Oral Biol Med. 2000; 11:199–215.
37. Larsen M, Yamada KM, Musselmann K. Systems analysis of salivary gland development and disease. Wiley Interdiscip Rev Syst Biol Med. 2010; 2:670–82.
crossref
38. Patel VN, Hoffman MP. Salivary gland development: a template for regeneration. Semin Cell Dev Biol. 2014; 25–26:52–60.
crossref
39. Makarenkova HP, Hoffman MP, Beenken A, Eliseenkova AV, Meech R, Tsau C, et al. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci Signal. 2009; 2:ra55. doi:. DOI: 10.1126/scisignal.2000304.
crossref
40. Nedvetsky PI, Emmerson E, Finley JK, Ettinger A, Cruz-Pa-checo N, Prochazka J, et al. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell. 2014; 30:449–62.
crossref
41. Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S, Ha-jihosseini MK, et al. FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol. 2005; 5:11.
crossref
42. Lombaert IM, Abrams SR, Li L, Eswarakumar VP, Sethi AJ, Witt RL, et al. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis. Stem Cell Rep. 2013; 1:604–19.
crossref
43. Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and slivary gland lumen formation by Wnt and FGF signals. Dev Biol. 2011; 358:156–67.
44. Patel VN, Lombaert IM, Cowherd SN, Shworak NW, Xu Y, Liu J, et al. Hs3st3-modified heparan sulfate controls KIT+ progenitor expansion by regulation 3-O-sulfotransferases. Dev Cell. 2014; 29:662–73.
45. Steinberg Z, Myers C, Heim VM, Lathrop CA, Rebustini IT, Stewart JS, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005; 132:1223–34.
crossref
46. Häärä O, Koivisto T, Miettinen PJ. EGF-receptor regulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells. Differentiation. 2009; 77:298–306.
crossref
47. Haara O, Fujimori S, Schmidt-Ullrich R, Hartmann C, Thes-leff I, Mikkola ML. Ectodysplasin and Wnt pathways are required for salivary gland branching morphogenesis. Development. 2011; 138:2681–91.
48. Knosp WM, Knox SM, Lombaert IM, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic ganglio-genesis requires sprout-dependent Wnt signals from epithelial progenitors. Dev Cell. 2015; 32:667–77.
49. Coghlan MP, Culbert AA, Cross DAE, Corcoran SL, Yates JW, Pearce NJ, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000; 7:793–803.
crossref
50. Jaskoll T, Leo T, Witcher D, Ormestad M, Astorga J, Bringas P Jr, et al. Sonic hedgehog signaling plays an essential role during embryonic salivary gland epithelial branching morphogenesis. Dev Dyn. 2004; 229:722–32.
crossref
51. Blecher SR, Debertin M, Murphy JS. Pleiotropic effect of Tabby gene on epidermal growth factor-containing cells of mouse submandibular gland. Anat Rec. 1983; 207:25–9.
crossref
52. Jaskoll T, Zhou YM, Trump G, Melnick M. Ectodysplasin receptormediated signaling is essential for embryonic submandibular salivary gland development. Anat Rec A Discov Mol Cell Evol Biol. 2003; 271:322–31.
crossref
53. Hoffman MP, Kidder BL, Steinberg ZL, Lakhani S, Ho S, Kleinman HK, et al. Gene expression profiles of mouse submandibular gland development: FGFR1 regulates branching morphogenesis in vitro through BMP- and FGF-dependent mechanisms. Development. 2002; 129:5767–78.
crossref
54. Fukuda Y, Masuda Y, Kishi J, Hashimoto Y, Hayakawa T, Nogawa H, et al. The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development. 1988; 103:259–67.
crossref
55. Hayakawa T, Kishi J, Nakanishi Y. Salivary gland morphogenesis: possible involvement of collagenase. Matrix Suppl. 1992; 1:344–51.
56. Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, et al. Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development. 2007; 134:4177–86.
crossref
57. Rebustini IT, Patel VN, Stewart JS, Layvey A, Georg-es-Labouesse E, Miner JH, et al. Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol. 2007; 308:15–29.
58. Sakai T, Larsen M, Yamada KM. Fibronectin requirement in branching morphogenesis. Nature. 2003; 423:876–81.
crossref
59. Johns ME. The salivary glands: anatomy and embryology. Otolaryngol Clin North Am. 1977; 10:261–71.
crossref
60. Frommer J. The human accessory parotid gland: its incidence, nature, and significance. Oral Surg Oral Med Oral Pathol. 1977; 43:671–6.
crossref
61. Ishizuka K, Oskutyte D, Satoh Y, Murakami T. Multisource inputs converge on the superior salivatory nucleus neurons in anaesthetized rats. Auton Neurosci. 2010; 156:104–10.
crossref

Fig. 1.
Anatomy of the anterior neck portions of developing salivary glands of mice (a-c). Embryonic day 16.5 (E16.5), post-natal day 0 (PN0) and adult mice showing the location of parotid gland, submandibular gland and sublingual gland. Scale bars, 1 mm.
aba-32-83f1.tif
Fig. 2.
Hematoxylin and eosin staining of the developing parotid gland (PG; a, c, e) and sublingual gland (SLG; b, d, f). Embryonic day 15.5 PG showing epithelial bud (a). Post-natal day 0 (PN0) PG showing terminal epithelial buds (c). Adult PG showing dark-colored acinar cells which characterizes serous acinar cell (e). E15.5 SLG with developing epithelial end buds and lumen formation (b). PN0 showing terminal tu-bules and differentiating acinar cells (d). Adult SLG showing light-colored acinar cells which characterizes mucous acinar cells (f). TT terminal tubule, ED excretory duct, SC serous acinar cell, ME myoepithelial cell, MC mucous acinar cell.
aba-32-83f2.tif
Table 1.
Functions of saliva
Function Effect Active constituents
Protection [13] Clearance Water
Clearance Lubrication Water Mucins, Glycoproteins
Thermal / Chemical insulation Mucins
Pellicle formation Proteins, Glycoproteins, Mucins
Tannin binding Basic proline-rich proteins, Histatins
Buffering [5] pH maintenance Bicarbonate, Phosphate, basic proteins, urea, ammonia
Neutralization of acids  
Tooth integrity [5] Enamel maturation, repair Calcium, Phosphate, Fluoride, Statherin, Acidic proline-rich Proteins
Antimicrobial activity [5,14] Physical barrier Mucins
Immune defense Secretory immunoglobulin A
Nonimmune defense Peroxidase, Lysozyme, Lactoferrin, Histatin, Mucins, Agglutinins, Secretory, Leukocyte protease inhibitor, Defensins, and Cathelicidin-LL 37
Tissue repair [14] Epithelial Wound healing Growth factors, Trefoil proteins, Regeneration
Digestion [5] Bolus formation Water, Mucins
Starch, triglyceride digestion Amylase, Lipase
Taste [15] Solution of molecules Water and lipocalins
Solution of molecules Maintenance of taste buds Water and lipocalins Epidermal growth factor and Carbonic anhydrase VI

Table adapted from Ten cate's oral histology, 8th edition; page 254.

Table 2.
Minor salivary glands and contribution to saliva
Name Location Type secretion
Labial Lips Mixed [16]
Buccal Cheeks Mixed [16]
Palatine Hard and soft Pure mucous [16]
Lingual Anterior Mixed
Middle Serous
Posterior Pure mucous [16]
Table 3.
Signaling genesis pathways involved in salivary gland morpho-
End bud formation FGF family
EGF family
BMP family
EDA / EDAR
EDA/ EDAR HSPGs (Heparan sulfate proteoglycans) [43]
Cleft formation HSPGs
HSPGs Collagens
Laminins
Fibronectin
FGF family
Lumen formation Wnt signaling
EDA / EDAR
HH signaling
VIP (Vasoactive intestinal peptide) [44]
Duct formation Wnt signaling
EDA / EDAR
EGF family
HH signaling
Notch signaling
VIP
Table 4.
Characteristics of major salivary glands
  Parotid gland Submandibular gland Sublingual gland
Developmental origin [5] Ectodermal Endodermal Endodermal
Opening of the ducts Buccal cavity across the maxillary second molar [24] Floor of buccal cavity at the sides of lingual frenulum [17,18,24] Floor of buccal cavity at the sides of lingual frenulum [18]
Type cells Serous [5] Mixed (serous and mucous) [5] Mostly mucous [5]
Types of acini Serous acini Sero-mucous acini Mostly mucous acini
Specific duct Stensen's duct [1,5] Wharton's duct [5] Duct of Rivinus Bartholin's duct [1,5] – connects with Wharton's duct
Duct types Three types intercalated, striated and excretory ducts Three types intercalated, striated and excretory ducts and GCT in case of rodents Three types intercalated, striated and excretory ducts
Nerve supply Glossopharyngeal nerve (CN IX), Trigeminal nerve (CN V) [25] Lingual nerve (Branch of CN V) & Facial nerve (CN VII) [26] Lingual nerve (Branch of CNV) & Facial nerve (CN VII) [26]
Amount of saliva production 25% of total saliva production [16,24] 60% of total saliva production [2,27] 5% of total saliva production [16]
Size of the glands Largest among all [18] Intermediate Smallest among all [18]
TOOLS
Similar articles