Journal List > J Rheum Dis > v.26(4) > 1137067

Kim, Chun, Park, and Lee: Systemic Sclerosis and Microbiota: Overview of Current Research Trends and Future Perspective

Abstract

The commensal microbiota contributes to the maintenance of immune homeostasis in the human body. Autoimmunity can be aggravated or alleviated by the microbiota, which affects both innate and adaptive immune cells. Many studies have demonstrated the role of gut dysbiosis, the alteration of the gut microbiome, in the development and progression of numerous autoimmune diseases. Systemic sclerosis (SSc) is an autoimmune disease of the connective tissue and is characterized by skin and lung fibrosis, as well as injuries in small arteries. Recent studies have shown variable degrees of dysbiosis in SSc patients and the effect of probiotics on these patients, providing evidence for the potential link between microbiota and SSc. However, further research is needed to elucidate the key microorganisms and the mechanisms through which they affect the pathoimmuno-logical process of SSc. This review summarizes the current knowledge regarding the association between microbiota and SSc, and discusses the changing perspectives and potential therapy strategies based on the microbiota and its products.

REFERENCES

1. De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019; 195:74–85.
crossref
2. Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, et al. Intestinal microbiota influences non-intestinal related autoimmune diseases. Front Microbiol. 2018; 9:432.
crossref
3. Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015; 159:122–7.
crossref
4. Bellocchi C, Volkmann ER. Update on the gastrointestinal microbiome in systemic sclerosis. Curr Rheumatol Rep. 2018; 20:49.
crossref
5. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011; 332:974–7.
crossref
6. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate antiinflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014; 15:413–23.
crossref
7. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013; 500:232–6.
crossref
8. Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 2013; 13:711–22.
crossref
9. Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 2003; 73:1683–90.
crossref
10. Zhong D, Wu C, Zeng X, Wang Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol. 2018; 37:25–34.
crossref
11. Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, et al. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 2016; 16:84.
crossref
12. Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS One. 2017; 12:e0173032.
crossref
13. Pozuelo M, Panda S, Santiago A, Mendez S, Accarino A, Santos J, et al. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci Rep. 2015; 5:12693.
crossref
14. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009; 15:1183–9.
crossref
15. Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. MBio. 2014; 5:e01548–14.
crossref
16. Rojo D, Hevia A, Bargiela R, López P, Cuervo A, González S, et al. Ranking the impact of human health disorders on gut metabolism: systemic lupus erythematosus and obesity as study cases. Sci Rep. 2015; 5:8310.
crossref
17. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016; 8:43.
crossref
18. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016; 7:12015.
crossref
19. Freedman SN, Shahi SK, Mangalam AK. The “gut feeling”: breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics. 2018; 15:109–25.
crossref
20. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016; 6:24072.
crossref
21. Oliveira Mde F, Rocha Bde O, Duarte GV. Psoriasis: classical and emerging comorbidities. An Bras Dermatol. 2015; 90:9–20.
22. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015; 67:128–39.
crossref
23. Emmanuel A. Current management of the gastrointestinal complications of systemic sclerosis. Nat Rev Gastroenterol Hepatol. 2016; 13:461–72.
crossref
24. Patrone V, Puglisi E, Cardinali M, Schnitzler TS, Svegliati S, Festa A, et al. Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci Rep. 2017; 7:14874.
crossref
25. Volkmann ER, Hoffmann-Vold AM, Chang YL, Jacobs JP, Tillisch K, Mayer EA, et al. Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol. 2017; 4:e000134.
crossref
26. Varga J, Trojanowska M, Kuwana M. Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. J Scleroderma Relat Disord. 2017; 2:137–52.
crossref
27. Chaudhuri V, Zhou L, Karasek M. Inflammatory cytokines induce the transformation of human dermal microvascular endothelial cells into myofibroblasts: a potential role in skin fibrogenesis. J Cutan Pathol. 2007; 34:146–53.
crossref
28. Chrobak I, Lenna S, Stawski L, Trojanowska M. Interferon-γ promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) β 2. J Cell Physiol. 2013; 228:1774–83.
29. Echeverría C, Montorfano I, Sarmiento D, Becerra A, Nuñez-Villena F, Figueroa XF, et al. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells. J Cell Mol Med. 2013; 17:800–14.
crossref
30. Mahler GJ, Farrar EJ, Butcher JT. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol. 2013; 33:121–30.
crossref
31. Maleszewska M, Moonen JR, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ 2 synergistically induce endothelial to mesenchymal transition in an NF κB-dependent manner. Immunobiology. 2013; 218:443–54.
32. Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med. 2016; 5:E45.
crossref
33. Stawski L, Han R, Bujor AM, Trojanowska M. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis. Arthritis Res Ther. 2012; 14:R194.
crossref
34. Wermuth PJ, Li Z, Mendoza FA, Jimenez SA. Stimulation of transforming growth factor-β 1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One. 2016; 11:e0161988.
35. Akamatsu T, Arai Y, Kosugi I, Kawasaki H, Meguro S, Sakao M, et al. Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. Fibrogenesis Tissue Repair. 2013; 6:15.
crossref
36. Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science. 2015; 348:aaa2151.
crossref
37. Wermuth PJ, Carney KR, Mendoza FA, Piera-Velazquez S, Jimenez SA. Endothelial cell-specific activation of transforming growth factor-β signaling in mice induces cutaneous, visceral, and microvascular fibrosis. Lab Invest. 2017; 97:806–18.
crossref
38. Kitaba S, Murota H, Terao M, Azukizawa H, Terabe F, Shima Y, et al. Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am J Pathol. 2012; 180:165–76.
crossref
39. Fuschiotti P, Medsger TA Jr, Morel PA. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum. 2009; 60:1119–28.
crossref
40. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004; 4:583–94.
crossref
41. O'Reilly S. Role of interleukin-13 in fibrosis, particularly systemic sclerosis. Biofactors. 2013; 39:593–6.
42. Lakos G, Melichian D, Wu M, Varga J. Increased bleomy-cin-induced skin fibrosis in mice lacking the Th1-specific transcription factor T-bet. Pathobiology. 2006; 73:224–37.
crossref
43. Wohlfahrt T, Rauber S, Uebe S, Luber M, Soare A, Ekici A, et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature. 2019; 566:344–9.
crossref
44. Hua-Huy T, Dinh-Xuan AT. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. Pathol Biol (Paris). 2015; 63:61–8.
crossref
45. Laurent P, Sisirak V, Lazaro E, Richez C, Duffau P, Blanco P, et al. Innate immunity in systemic sclerosis fibrosis: recent advances. Front Immunol. 2018; 9:1702.
crossref
46. Fang F, Marangoni RG, Zhou X, Yang Y, Ye B, Shangguang A, et al. Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor β-dependent fibroblast activation. Arthritis Rheumatol. 2016; 68:1989–2002.
crossref
47. Fang F, Ooka K, Sun X, Shah R, Bhattacharyya S, Wei J, et al. A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by inducing autocrine IFN signaling. J Immunol. 2013; 191:2956–66.
crossref
48. O'Reilly S, Cant R, Ciechomska M, Finnigan J, Oakley F, Hambleton S, et al. Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κ B. Immunology. 2014; 143:331–40.
49. Stifano G, Christmann RB. Macrophage involvement in systemic sclerosis: do we need more evidence? Curr Rheumatol Rep. 2016; 18:2.
crossref
50. Frantz C, Pezet S, Avouac J, Allanore Y. Soluble CD163 as a potential biomarker in systemic sclerosis. Dis Markers. 2018; 2018; 8509583.
crossref
51. Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 2017; 9:27.
crossref
52. Knipper JA, Willenborg S, Brinckmann J, Bloch W, Maaß T, Wagener R, et al. Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity. 2015; 43:803–16.
crossref
53. Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS, et al. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014; 193:5171–80.
crossref
54. Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Núñez G, Shibuya A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe. 2014; 15:95–102.
crossref
55. Ah Kioon MD, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med. 2018; 10:eaam8458.
crossref
56. Truchetet ME, Brembilla NC, Montanari E, Allanore Y, Chizzolini C. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther. 2011; 13:R166.
crossref
57. Dumoitier N, Chaigne B, Régent A, Lofek S, Mhibik M, Dorfmüller P, et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor β and activate fibroblasts. Arthritis Rheumatol. 2017; 69:1078–89.
crossref
58. Hinchcliff M, Huang CC, Wood TA, Matthew Mahoney J, Martyanov V, Bhattacharyya S, et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J Invest Dermatol. 2013; 133:1979–89.
crossref
59. Johnson ME, Franks JM, Cai G, Mehta BK, Wood TA, Archambault K, et al. Microbiome dysbiosis is associated with disease duration and increased inflammatory gene expression in systemic sclerosis skin. Arthritis Res Ther. 2019; 21:49.
crossref
60. Milano A, Pendergrass SA, Sargent JL, George LK, McCalmont TH, Connolly MK, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One. 2008; 3:e2696.
crossref
61. Pendergrass SA, Lemaire R, Francis IP, Mahoney JM, Lafyatis R, Whitfield ML. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J Invest Dermatol. 2012; 132:1363–73.
crossref
62. Volkmann ER, Chang YL, Barroso N, Furst DE, Clements PJ, Gorn AH, et al. Association of systemic sclerosis with a unique colonic microbial consortium. Arthritis Rheumatol. 2016; 68:1483–92.
crossref
63. Lim LH, Li HY, Huang CH, Lee BW, Lee YK, Chua KY. The effects of heat-killed wild-type Lactobacillus casei Shirota on allergic immune responses in an allergy mouse model. Int Arch Allergy Immunol. 2009; 148:297–304.
64. Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum Increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κ B, and upregulating expression of microRNA-21. Gastroenterology. 2017; 152:851–66.e24.
65. Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 2016; 68:2646–61.
crossref
66. Kugathasan S, Denson LA, Walters TD, Kim MO, Marigorta UM, Schirmer M, et al. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet. 2017; 389:1710–8.
67. Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Milani C, et al. Microbial and metabolic mul-ti-omic correlations in systemic sclerosis patients. Ann N Y Acad Sci. 2018; 1421; 97–109.
crossref
68. Andréasson K, Alrawi Z, Persson A, Jönsson G, Marsal J. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther. 2016; 18:278.
crossref
69. Marighela TF, Arismendi MI, Marvulle V, Brunialti MKC, Salomão R, Kayser C. Effect of probiotics on gastrointestinal symptoms and immune parameters in systemic sclerosis: a randomized placebo-controlled trial. Rheumatology (Oxford). 2019 May 5; [Epub].DOI: DOI:10.1093/rheumatology/kez160.
crossref
70. Park JS, Choi JW, Jhun J, Kwon JY, Lee BI, Yang CW, et al. Lactobacillus acidophilus improves intestinal inflammation in an acute colitis mouse model by regulation of Th17 and Treg cell balance and fibrosis development. J Med Food. 2018; 21:215–24.
crossref
71. Frech TM, Khanna D, Maranian P, Frech EJ, Sawitzke AD, Murtaugh MA. Probiotics for the treatment of systemic sclerosis-associated gastrointestinal bloating/ distention. Clin Exp Rheumatol. 2011; 29(2 Suppl 65):S22–5.
72. Enteshari-Moghaddam A, Movassaghi S, Rostamian A. Effect of probiotics in the treatment of gastrointestinal symptoms in patients with scleroderma. Int J Sci Rep. 2016; 2:94–8.
crossref
73. de Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology. 2017; 152:1–12.
crossref
74. Owaga E, Hsieh RH, Mugendi B, Masuku S, Shih CK, Chang JS. Th17 cells as potential probiotic therapeutic targets in inflammatory bowel diseases. Int J Mol Sci. 2015; 16:20841–58.
75. Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol. 2018; 102:17–37.
crossref
76. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017; 14:491–502.
crossref
77. Volkmann ER. Intestinal microbiome in scleroderma: recent progress. Curr Opin Rheumatol. 2017; 29:553–60.
crossref
78. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488:178–84.
crossref
79. Guo X, Li J, Tang R, Zhang G, Zeng H, Wood RJ, et al. High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017; 2017; 9474896.
crossref
80. Hong J, Jia Y, Pan S, Jia L, Li H, Han Z, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget. 2016; 7:56071–82.
crossref
81. Staudacher HM, Irving PM, Lomer MC, Whelan K. Mechanisms and efficacy of dietary FODMAP restriction in IBS. Nat Rev Gastroenterol Hepatol. 2014; 11:256–66.
crossref
82. McIntosh K, Reed DE, Schneider T, Dang F, Keshteli AH, De Palma G, et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 2017; 66:1241–51.
crossref
83. Marie I, Leroi AM, Gourcerol G, Levesque H, Ménard JF, Ducrotte P. Fructose malabsorption in systemic sclerosis. Medicine (Baltimore). 2015; 94:e1601.
crossref
84. Denton CP, Murray C. Cause or effect? Interpreting emerging evidence for dysbiosis in systemic sclerosis. Arthritis Res Ther. 2019; 21:81.
crossref
85. Rosman Y, Lidar M, Shoenfeld Y. Antibiotic therapy in autoimmune disorders. Clin Pract. 2014; 11:91–103.
crossref
86. Mu Q, Tavella VJ, Kirby JL, Cecere TE, Chung M, Lee J, et al. Antibiotics ameliorate lupus-like symptoms in mice. Sci Rep. 2017; 7:13675.
crossref
87. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8:39.
crossref
88. Mehta H, Goulet PO, Mashiko S, Desjardins J, Pérez G, Koenig M, et al. Early-life antibiotic exposure causes intestinal dysbiosis and exacerbates skin and lung pathology in experimental systemic sclerosis. J Invest Dermatol. 2017; 137:2316–25.
crossref
89. Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018; 553:427–36.
crossref
90. Weyrich LS, Dixit S, Farrer AG, Cooper AJ, Cooper AJ. The skin microbiome: associations between altered microbial communities and disease. Australas J Dermatol. 2015; 56:268–74.
crossref
91. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011; 9:244–53.
crossref
92. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009; 15:1377–82.
crossref
93. Arron ST, Dimon MT, Li Z, Johnson ME, Wood TA, Feeney L, et al. High Rhodotorula sequences in skin transcriptome of patients with diffuse systemic sclerosis. J Invest Dermatol. 2014; 134:2138–45.
crossref
94. Schwarz A, Bruhs A, Schwarz T. The short-chain fatty acid sodium butyrate functions as a regulator of the skin immune system. J Invest Dermatol. 2017; 137:855–64.
crossref
95. Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008; 371:651–9.
crossref
96. Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015; 60(Suppl 2):S129–34.
crossref

Figure 1.
Potential effects of microbiota-targeted challenges in systemic sclerosis (SSc). Probiotics, prebiotics, and dietary fibers can help produce microbial metabolites, such as short-chain fatty acids (SCFAs), via the recovery of commensal bacteria. SCFAs bind to G protein-coupled receptors (GPCRs) on intestinal epithelial cells and immune cells. In turn, SCFAs regulate intestinal barrier integrity by inducing secretion of interleukin (IL)-18 by epithelial cells, differentiation of T cells into regulatory T (Treg) cells, and proinflammatory cytokine production by macrophages. Dendritic cells (DCs) also regulate T cell differentiation by both SCFAs and microbe-associated molecular patterns (MAMPs) sensing through pattern-recognition receptors (PRRs). Presumably, the circulation of SCFAs and anti-inflammatory cytokines might prevent fibrosis by modulating the dysregulated immune system in SSc. TGF-β: transforming growth factor-β, TLR: toll-like receptor, ECM: extracellular matrix, pDC: plasmacytoid DC, TNF-α: tumor necrosis factor-α.
jrd-26-235f1.tif
Figure 2.
Detection of disease-specific bacterial species using bacterial antibody microarray. (A) Representative images of gut bacterial antibody microarray in serum. (B) Differential expression at the bacterial species level between healthy controls and patients. (C) Species abundance analysis between healthy controls (n=11) and patients (n=8). Green and red col-ors indicate high and low expression of bacterial antibodies, respectively. *p<0.01.
jrd-26-235f2.tif
Table 1.
The alterations of gastrointestinal microbial composition in SSc patients
Bacterial taxa Sample Observation References
Phylum      
 Bacteroidetes Feces ↓ in SSc (vs. HC) 34
 Firmicutes Feces ↑ in SSc (vs. HC) 34,89
Class      
 γ-Proteobacteria Colonic lavage ↑ in SSc (vs. HC) 65
Family      
 Clostridiaceae Feces ↓ in SSc (vs. HC) 71
 U.m. of Lachnospiraceae Feces ↓ in SSc (vs. HC) 89
Genus      
Actinobacillus Colonic lavage ↑ in severe (vs. less GI symptoms) 65
Akkermansia Colonic lavage/Feces ↑ in SSc (vs. HC) 34,65,70
   Feces ↑ in SSc/GI+ (vs. SSc/GI-)  
Bacteroides Feces ↓ in SSc (vs. HC) 34,70
     ↓ in SSc/GI-(vs. HC)  
Bifidobacterium Colonic lavage/Feces ↑ in SSc (vs. HC) 65,70
Blautia Feces ↑ in SSc/GI+ (vs. SSc/GI-and HC) 70
Butyricimonas Feces ↑ in SSc (vs. HC) 89
Clostridium Colonic lavage/Feces ↓ in SSc (vs. HC) 34,65,70
     ↓ in severe (vs. less GI symptoms)  
Coprococcus Feces ↑ in SSc/GI+ (vs. SSc/GI– and HC) 70
Desulfovibrio Feces ↑ in SSc (vs. HC) 89
     ↑ in SSc/GI+ (vs. HC)  
Erwinia Colonic lavage/Feces ↑ in SSc (vs. HC) 34,65
Faecalibacterium Colonic lavage/Feces ↓ in SSc (vs. HC) 34,65,70
   Feces ↓ in SSc/GI+ (vs. SSc/GI– and HC)  
Fusobacterium Colonic lavage/Feces ↑ in SSc (vs. HC) 34,65
   Colonic lavage ↑ in severe (vs. less GI symptoms)  
Lactobacillus Colonic lavage/Feces ↑ in SSc (vs. HC) 34,65,70,71
   Feces ↑ in SSc/GI+ (vs. HC)  
     ↓ in severe (vs. less GI symptoms)  
Parabacteroids Feces ↑ in SSc (vs. HC) 34,89
     ↑ in severe (vs. less GI symptoms)  
Prevotella Colonic lavage ↑ in SSc (vs. HC) 34,65,70
   Feces ↓ in SSc (vs. HC)  
     ↓ in SSc/GI+ (vs. HC)  
     ↑ in severe (vs. less GI symptoms)  
Rikenella Feces ↓ in SSc (vs. HC) 65
Roseburia Feces ↓ in SSc (vs. HC) 70
     ↓ in SSc/GI+ (vs. HC)  
Ruminococcus Colonic lavage/Feces ↑ in SSc (vs. HC) 34,65
Streptococcus Feces ↑ in SSc (vs. HC) 70
     ↑ in SSc/GI– (vs. HC)  
Turicibacter Feces ↓ in SSc (vs. HC) 89
Table 1.
Continued
Bacterial taxa Sample Observation References
 Species      
Bacteroides fragilis Colonic lavage ↓ in severe (vs. less GI symptoms) 65
Candidatus arthromitus Colonic lavage ↓ in severe (vs. less GI symptoms)  
Faeclibacterium prausnitzii Feces ↓ in SSc (vs. HC) 70,71
     ↓ in SSc/GI+ (vs. SSc/GI– and HC)  
Lactobacillus reuteri Feces ↑ in SSc/GI+ (vs. HC) 70
Lactobacillus salivaris Feces ↑ in SSc/GI+ (vs. SSC/GI– and HC)  
Roseburia faecis Feces ↓ in SSc/GI+ (vs. HC)  
Streptococcus salivarius Feces ↑ in SSc/GI– (vs. HC)  

SSc: systemic sclerosis, HC: healthy control, GI: gastrointestinal, SSc/GI+: SSc patients with gastrointestinal symptoms, SSc/GI-: SSc patients without gastrointestinal symptoms.

TOOLS
Similar articles