1. Cusick SE, Georgieff MK. The role of nutrition in brain development: the golden opportunity of the “first 1000 days”. J Pediatr. 2016; 175:16–21.
2. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014; 72:267–284.
3. Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development: a meta-analysis. Am J Clin Nutr. 1999; 70:525–535.
4. Nyaradi A, Li J, Hickling S, Foster J, Oddy WH. The role of nutrition in children's neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013; 7:97.
5. Regional Committee for the Eastern Mediterranean. Regional Strategy on Nutrition 2010-2019. Geneva: World Health Organization;2010. 09. p. 11. Report No.: EM/RC57/5.
6. Hwalla N, Al Dhaheri AS, Radwan H, Alfawaz HA, Fouda MA, Al-Daghri NM, et al. The prevalence of micronutrient deficiencies and inadequacies in the middle east and approaches to interventions. Nutrients. 2017; 9:E229.
7. Victora CG, Bahl R, Barros AJ, França GV, Horton S, Krasevec J, et al. Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016; 387:475–490.
8. Gernand AD, Schulze KJ, Stewart CP, West KP Jr, Christian P. Micronutrient deficiencies in pregnancy worldwide: health effects and prevention. Nat Rev Endocrinol. 2016; 12:274–289.
9. Black MM. Micronutrient deficiencies and cognitive functioning. J Nutr. 2003; 133:11 Suppl 2. 3927S–3931S.
10. Mattei D, Pietrobelli A. Micronutrients and brain development. Curr Nutr Rep. 2019; 8:99–107.
11. Gahagan S, Delker E, Blanco E, Burrows R, Lozoff B. Randomized controlled trial of iron-fortified versus low-iron infant formula: developmental outcomes at 16 years. J Pediatr. 2019; 212:124–130.e1.
12. Fuglestad AJ, Kroupina MG, Johnson DE, Georgieff MK. Micronutrient status and neurodevelopment in internationally adopted children. Acta Paediatr. 2016; 105:e67–e76.
13. Močenić I, Kolić I, Nišević JR, Belančić A, Tratnik JS, Mazej D, et al. Prenatal selenium status, neonatal cerebellum measures and child neurodevelopment at the age of 18 months. Environ Res. 2019; 176:108529.
14. Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res. 2019; [Epub ahead of print]. DOI:
10.1016/j.bbr.2019.112011.
15. Cakir M, Senyuva S, Kul S, Sag E, Cansu A, Yucesan FB, et al. Neurocognitive functions in infants with malnutrition; relation with long-chain polyunsaturated fatty acids, micronutrients levels and magnetic resonance spectroscopy. Pediatr Gastroenterol Hepatol Nutr. 2019; 22:171–180.
16. Janbek J, Specht IO, Heitmann BL. Associations between vitamin D status in pregnancy and offspring neurodevelopment: a systematic literature review. Nutr Rev. 2019; 77:330–349.
17. Markhus MW, Dahl L, Moe V, Abel MH, Brantsæter AL, Øyen J, et al. Maternal iodine status is associated with offspring language skills in infancy and toddlerhood. Nutrients. 2018; 10:E1270.
18. Velasco I, Bath SC, Rayman MP. Iodine as essential nutrient during the first 1000 days of life. Nutrients. 2018; 10:E290.
19. Nissensohn M, Sánchez-Villegas A, Fuentes Lugo D, Henríquez Sánchez P, Doreste Alonso J, Skinner AL, et al. Effect of zinc intake on mental and motor development in infants: a meta-analysis. Int J Vitam Nutr Res. 2013; 83:203–215.
20. Srinivasan K, Thomas T, Kapanee AR, Ramthal A, Bellinger DC, Bosch RJ, et al. Effects of maternal vitamin B12 supplementation on early infant neurocognitive outcomes: a randomized controlled clinical trial. Matern Child Nutr. 2017; [Epub ahead of print]. DOI:
10.1111/mcn.12325.
21. Zheng L, Fleith M, Giuffrida F, O'Neill BV, Schneider N. Dietary polar lipids and cognitive development: a narrative review. Adv Nutr. 2019; [Epub ahead of print]. DOI:
10.1093/advances/nmz051.
22. Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res. 2014; 53:1–17.
23. Melse-Boonstra A, Jaiswal N. Iodine deficiency in pregnancy, infancy and childhood and its consequences for brain development. Best Pract Res Clin Endocrinol Metab. 2010; 24:29–38.
24. Delange F, Wolff P, Gnat D, Dramaix M, Pilchen M, Vertongen F. Iodine deficiency during infancy and early childhood in Belgium: does it pose a risk to brain development? Eur J Pediatr. 2001; 160:251–254.
25. Zimmermann MB. The effects of iodine deficiency in pregnancy and infancy. Paediatr Perinat Epidemiol. 2012; 26:Suppl 1. 108–117.
26. McGarel C, Pentieva K, Strain JJ, McNulty H. Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc. 2015; 74:46–55.
27. Black MM. Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull. 2008; 29:2 Suppl. S126–S131.
28. Ekici F, Tekbas G, Hattapoğlu S, Yaramış A, Önder H, Bilici A. Brain MRI and MR spectroscopy findings in children with nutritional vitamin B12 deficiency. Clin Neuroradiol. 2016; 26:215–220.
29. Filippi CG, Uluğ AM, Deck MD, Zimmerman RD, Heier LA. Developmental delay in children: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol. 2002; 23:882–888.
30. Algarin C, Karunakaran KD, Reyes S, Morales C, Lozoff B, Peirano P, et al. Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy. Front Aging Neurosci. 2017; DOI:
10.3389/fnagi.2017.00054.
31. Piccoli GB, Clari R, Vigotti FN, Leone F, Attini R, Cabiddu G, et al. Vegan-vegetarian diets in pregnancy: danger or panacea? a systematic narrative review. BJOG. 2015; 125:623–633.