1. Di Russo F, Teder-Sälejärvi WA, Hillyard SA. Steady-state VEP and attentional visual processing. In : Zani A, Proverbio A, editors. The Cognitive Electrophysiology of Mind and Brain. Cambridge, MA: Academic Press;2002. p. 259–274.
2. Chen X, Chen Z, Gao S, Gao X. A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces. 2014; 1(3-4):181–191.
3. Zhang Y, Xu P, Cheng K, Yao D. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. J Neurosci Methods. 2014; 221:32–40.
4. de Tommaso M, Sciruicchio V, Guido M, Sasanelli G, Puca F. Steady-state visual-evoked potentials in headache: diagnostic value in migraine and tension-type headache patients. Cephalalgia. 1999; 19(1):23–26.
5. Mun S, Park MC, Park S, Whang M. SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neurosci Lett. 2012; 525(2):89–94.
6. Hwang HJ, Kim S, Choi S, Im CH. EEG-based brain-computer interfaces: a thorough literature survey. Int J Hum Comput Interact. 2013; 29(12):814–826.
7. Amiri S, Rabbi A, Azinfar L, Fazel-Rezai R. A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems. In : Fazel-Rezai R, editor. Brain-Computer Interface Systems: Recent Progress and Future Prospects. Rijeka, Croatia: Intech Open;2013. p. 195–213.
8. Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors (Basel). 2012; 12(2):1211–1279.
9. Allison B, Lüth T, Valbuena D, Teymourian A, Volosyak I, Gräser A. BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng. 2010; 18(2):107–116.
10. Allison BZ, Neuper C. Could anyone use a BCI?. In : Tan DS, Nijholt A, editors. Brain-Computer Interfaces: Applying Our Minds to Human-Computer Interaction. London, England: Springer, London;2010. p. 35–54.
11. Volosyak I, Valbuena D, Lüth T, Malechka T, Gräser A. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng. 2011; 19(3):232–239.
12. Ahn M, Cho H, Ahn S, Jun SC. High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery. PLoS One. 2013; 8(11):e80886.
13. Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain Topogr. 2010; 23(2):194–198.
14. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulat. 2008; 1(3):206–223.
15. In : Ramaraju S, Izzidien A, Roula M, McCarthy P, editors. Effect of tDCS application on P300 potentials: a randomized, double blind placebo controlled study. 2014 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB); 2014 Dec 9–12; Orlando, FL. Piscataway: IEEE;2014. 12. p. 114.
16. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001; 57(10):1899–1901.
17. Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004; 19(10):2720–2726.
18. Accornero N, Li Voti P, La Riccia M, Gregori B. Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res. 2007; 178(2):261–266.
19. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci. 2004; 45(2):702–707.
20. In : Liu B, Chen X, Yang C, Wu J, Gao X, editors. Effects of transcranial direct current stimulation on steady-state visual evoked potentials. 2017 39th Annual International Conference of Engineering in Medicine and Biology Society (EMBC); 2017 Jul 11–15; Seogwipo, Korea. Piscataway: IEEE;2017. 07. p. 2129.
21. Jung YJ, Kim JH, Im CH. A MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS). Biomed Eng Lett. 2013; 3(1):39–46.
22. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002; 125(Pt 10):2238–2247.
23. Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett. 2014; 564:6–10.
24. Thair H, Holloway AL, Newport R, Smith AD. Transcranial direct current stimulation (tDCS): a Beginner's guide for design and implementation. Front Neurosci. 2017; 11(641):641.
25. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006; 117(4):845–850.
26. Ambrus GG, Al-Moyed H, Chaieb L, Sarp L, Antal A, Paulus W. The fade-in--short stimulation--fade out approach to sham tDCS--reliable at 1 mA for naïve and experienced subjects, but not investigators. Brain Stimulat. 2012; 5(4):499–504.
27. Bin G, Gao X, Yan Z, Hong B, Gao S. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng. 2009; 6(4):046002.
28. Chen X, Wang Y, Gao S, Jung TP, Gao X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng. 2015; 12(4):046008.
29. Lin Z, Zhang C, Wu W, Gao X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng. 2006; 53(12 Pt 2):2610–2614.
30. Antal A, Kincses TZ, Nitsche MA, Paulus W. Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Exp Brain Res. 2003; 150(3):375–378.
31. Benwell CS, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex. 2015; 69:152–165.
32. Fabbri A. Studio Degli Effetti Della Stimolazione Transcranica a Corrente Diretta (tDCS) Sui Potenziali Evocati Visivi Steady State. Bologna, Italy: Università di Bologna;2014.
33. Xie J, Xu G, Wang J, Li M, Han C, Jia Y. Effects of mental load and fatigue on steady-state evoked potential based brain computer interface tasks: a comparison of periodic flickering and motion-reversal based visual attention. PLoS One. 2016; 11(9):e0163426.
34. Bekhtereva V, Sander C, Forschack N, Olbrich S, Hegerl U, Müller MM. Effects of EEG-vigilance regulation patterns on early perceptual processes in human visual cortex. Clin Neurophysiol. 2014; 125(1):98–107.