Journal List > J Bacteriol Virol > v.49(3) > 1134868

Yang and Suh: Diversity of Genetic Environment of blaCTX-M Genes and Antimicrobial Susceptibility in Extended-spectrum β-lactamase producing Escherichia coli Isolated in Korea

Abstract

Increasing resistance due to the production of extended-spectrum β-lactamase (ESBL) in Escherichia coli is a major problem to public health and CTX-M enzymes have become the most prevalent ESBL worldwide. In this study, resistance profiles of E. coli isolated in Korea and the genetic environments of blaCTX-M genes were analyzed by PCR and direct sequencing to clarify the mechanisms of spread of CTX-M. Resistance rates of CTX-M-producing E. coli, including β-lactams, fluoroquinolones and aminoglycosides, were significantly higher than that of CTX-M-non-producers (p<0.01). Of 41 tested, 39 (95.1%) isolates of CTX-M-producing E. coli showed resistance transfer by conjugation. All the transconjugants harboured large plasmids of 118~172 megadalton. Insertion sequence ISEcp1B was detected in the upstream of the blaCTX-M in 38 (92.7%) isolates with blaCTX-M. ISEcp1B was disrupted by IS26 in 16(39.0%) isolates with bla CTX-M. ISEcp1B carried -35 and -10 promoter components between right inverted repeat (IRR) and the start codon of blaCTX-M. orf477 or IS903D was observed in the downstream of the blaCTX-M in all the isolates with blaCTX-M-3/15/55 or with bla CTX-M-14/27, respectively. Sequence similar to IRR of ISEcp1B was located downstream of orf477. Target duplication sequences were detected both upstream of IRL and downstream of IRR. These results showed the involvement of ISEcp1B in the mobilization of the resistance genes. In conclusion, the surrounding DNAs of blaCTX-M genes were very diverse, and the spread and the expression of CTX-M may be deeply related with ISEcp1B. These informations will provide important knowledge to control the increase in CTX-M-ESBLs.

REFERENCES

1). Rossolini GM, D’ Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect. 2008; 14:33–41.
crossref
2). Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010; 13:558–64.
3). Pitout JD, Laupland KB. Extendedspectrum β- lactamase- producing Enterobacteriaceae: an emerging public- health concern. Lancet Infect Dis. 2008; 8:159–66.
4). Pottinger P, Reller LB, Ryan KJ. Enterobacteriaceae. Ryan KJ, Ray CG, editors. Sherris Medical Microbiology. 6th ed.New York: McGraw-Hill Education, Inc.;2014. p. 579–608.
5). Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011; 66:1–14.
6). Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist. 2011; 17:83–97.
7). Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48:1–12.
crossref
8). Kang CI, Wi YM, Lee MY, Ko KS, Chung DR, Peck KR, et al. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J Clin Microbiol. 2012; 50:312–7.
9). El Salabi A, Walsh TR, Chouchani C. Extended spectrum betalactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gramnegative bacteria. Crit Rev Microbiol. 2013; 39:113–22.
10). Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev. 2011; 35:707–35.
crossref
11). Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013; 303:298–304.
crossref
12). Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014; 38:865–91.
crossref
13). Hickman AB, Dyda F. Mechanisms of DNA transposition. Craig NL, editor. Mobile DNA III. 3rd ed.Washington, DC: ASM Press;2015. p. 531–53.
crossref
14). Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M. Everyman's guide to bacterial insertion sequences. Craig NL, editor. Mobile DNA III. 3rd ed.Washington, DC: ASM Press;2015. p. 555–90.
crossref
15). Escudero JA, Loot C, Nivina A, Mazel D. The Integron: Adaptation on demand. Craig NL, editor. Mobile DNA III. 3rd ed.Washington, DC: ASM Press;2015. p. 139–61.
16). Lartigue MF, Poirel L, Nordmann P. Diversity of genetic environment of bla CTX- M genes. FEMS Microbiol Lett. 2004; 234:201–7.
17). Eckert C, Gautier V, Arlet G. DNA sequence analysis of the genetic environment of various bla CTX- M genes. J Antimicrob Chemother. 2006; 57:14–23.
18). Zhao WH, Hu ZQ. Epidemiology and genetics of CTX-M extended- spectrum β- lactamases in Gram-negative bacteria. Crit Rev Microbiol. 2013; 39:79–101.
19). Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M, Takakura S, et al. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother. 2015; 70:1639–49.
20). Strockbine NA, Bopp CA, Fields PI, Kaper JB, Nataro JP. Escherichia, Shigella, and Salnomella. Jorgensen JH, Pfaller MA, editors. Manual of Clinical Microbiology. 11th ed.Washington, DC: ASM Press;2015. p. 685–713.
21). Jorgensen JH, Turnidge JD. Susceptibility test methods: Dilution and disk diffusion methods. Jorgensen JH, Pfaller MA, editors. Manual of Clinical Microbiology. 11th ed.Washington, DC: ASM Press;2015. p. 1253–73.
crossref
22). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 24th ed.Wayne: CLSI Press;2014.
23). Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug- resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268–81.
24). Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981; 145:1365–73.
crossref
25). Levy-Hara G, Amá bile-Cuevas CF, Gould I, Hutchinson J, Abbo L, Saxynger L, et al. “Ten commandments” for the appropriate use of antibiotics by the practicing physician in an outpatient setting. Front Microbiol. 2011; 2:230.
crossref
26). Matsumura Y, Yamamoto M, Nagao M, Ito Y, Takakura S, Ichiyama S. Association of fluoroquinolone resistance, virulence genes, and IncF plasmids with extended-spectrum-β-lactamase-producing Escherichia coli sequence type 131 (ST131) and ST405 clonal groups. Antimicrob Agents Chemother. 2013; 57:4736–42.
27). Shin J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect. 2011; 63:39–47.
28). Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, De Champs C, et al. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother. 2003; 52:29–35.
crossref
29). Cantó n R, Morosini M. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011; 35:977–91.
crossref
30). Amá bile-Cuevas CF. Antibiotic resistance: From Darwin to Lederberg to Keynes. Microb Drug Resist. 2013; 19:73–87.
31). Kuo HY, Chang KC, Kuo JW, Yueh HW, Liou ML. Imipenem: a potent inducer of multidrug resistance in Acinetobacter baumannii. Int J Antimicrob Agents. 2012; 39:33–8.
32). Hegstad K, Samuelsen O, Hegstad J, Sundsfjord A. Molecular methods for detection of antibacterial resistance genes: rationale and applications. Amsterdam D, editor. Antibiotics in Laboratory Medicine. 6th ed.Philadelphia: Wolters Kluwer Health;2015. p. 408–49.
33). Adler A, Gniadkowski M, Baraniak A, Izdebski R Fiett J, Hryniewicz W, et al. Transmission dynamics of ESBL-producing Escherichia coli clones in rehabilitation wards at a tertiary care centre. Clin Microbiol Infect. 2012; 18:497–505.
34). Ruiz del Castillo B, Vinué L, Romá n EJ, Guerra B, Carattoli A, Torres C, et al. Molecular characterization of multiresistant Escherichia coli producing or not extended- spectrum β- lactamases. BMC Microbiol. 2013; 13:84.
35). Kim J, Bae IK, Jeong SH, Chang CL, Lee CH, Lee K. Characterization of IncF plasmids carrying the bla CTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J Antimicrob Chemother. 2011; 66:1263–8.
36). Matsumura Y, Yamamoto M, Nagao M, Hotta G, Matsushima A, Ito Y, et al. Emergence and spread of B2-ST131-O25b, B2-ST131-O16 and D-ST405 clonal groups among extended-spectrum-β-lactamase-producing Escherichia coli in Japan. J Antimicrob Chemother. 2012; 67:2612–20.
37). Mnif B, Harhour H, Jdidi J, Mahjoubi F, Genel N, Arlet G, et al. Molecular epidemiology of extended- spectrum β- lactamase- producing Escherichia coli in Tunisia and characterization of their virulence factors and plasmid addiction systems. BMC Microbiol. 2013; 13:147.
38). Poirel L, Lartigue MF, Decousser JW, Nordmann P. ISEcp1B- mediated transposition of bla CTX- M in Escherichia coli. Antimicrob Agents Chemother. 2005; 49:447–50.
39). Readman JB, Dickson G, Coldham NG. Translational inhibition of CTX-M extended- spectrum β- lactamase in clinical strains of Escherichia coli by synthetic antisense oligonucleotides partially restores sensitivity to cefotaxime. Front Microbiol. 2016; 7:373.
crossref

Figure 1.
Resistance to increasing numbers of different antibiotics in CTX-M-producing (░) and CTX-M-non-producing (■) isolates.
jbv-49-95f1.tif
Figure 2.
Schematic representation of the surrounding DNA sequences of the blaCTx-m-3 genes of four multidrug resistant Escherichia coli isolates. Row1, JE120: 2, JE125: 3, JE64: 4, JE62. TD, Target duplication. IRL and IRR, left and right inverted repeat sequences for ISEcp1B or IS26. tnpA, transposase gene. ATG, start codon. TAA, stop codon. P, promotor.
jbv-49-95f2.tif
Figure 3.
Nucleotide sequence of DNA region of CTX-M-3-producing Escherichia coli JE1 20. The deduced amino acid sequence is indicated in single-letter code below the nucleotide sequence. Horizontal arrows, start codons. Asterisks, stop codons. TD, target duplication. IRL and IRR, left and right inverted repeat sequences, respectively. RBS, ribosomal binding site. The -35 and -10 signals, the promoter sequences of the blacTx-M-3. tnpA, transposase gene.
jbv-49-95f3.tif
Figure 4.
Schematic representation of the surrounding DNA sequences of the blacTx-M-15 and blacTx-M-55 genes of five multidrug resistant Escherichia coli isolates. Row1, JE36: 2, JE56 and JE11: 3, JE77: 4, JE28. TD, Target duplication. IRL and IRR, left and right inverted repeat sequences for IS26 or ISEcp1B. tnpA, transposase gene. ATG, start codon. TAA, stop codon P, promotor. a. TTCCT in JE11 (CTX-M-55). b. 45 bp in JE11 (CTX-M-55).
jbv-49-95f4.tif
Figure 5.
Schematic representation of the surrounding DNA sequences of the blacTx-M-14 genes of four multidrug resistant Escherichia coli isolates. Row1, JE45: 2, JE121: 3, JE123: 4, JE124. TD, Target duplication. IRL and IRR, left and right inverted repeat sequences for ISEcp/Bor IS26. tnpA, transposase gene. ATG and GTG, start codon. TAA, stop codon. P, promotor.
jbv-49-95f5.tif
Figure 6.
Schematic representation of the surrounding DNA sequences of the blactx-m-27 genes of three multidrug resistant E scherichia coli isolates. Row1, JE22: 2, JE78: 3, JE80. TD, Target duplication. IRL and IRR, left and right inverted repeat sequences for ISEcp/Bor IS26. tnpA, transposase gene. iron, iron transport gene. ATG and GTG, start codon. TAA, stop codon. P, promotor.
jbv-49-95f6.tif
Table 1.
Primer sequences used for PCR and DNA sequencing
Primer name Primer sequence (5’ to 3’) GenBank accession no. Position of primer
CTX-M3-S CGT CAC GCT GTT GTT AGG AA AM003906 1520-1539
CTX-M3-AS ACG GCT TTC TGC CTT AGG TT AM003906 2300-2281
CTX-M3-F CTT CCA GAA TAA GGA ATC CCA T AM003906 1453-1474
CTX-M3-R1 CCC ATT CCG TTT CCG CTA AM003906 2366-2349
CTXM914F GCT GGA GAA AAG CAG CGGAG AJ972955 1751-1770
CTXM914R GTA AGC TGA CGC AAC GTC TG AJ972955 2224-2205
CTX-M9-S TAT TGG GAG TTT GAG ATG GT AJ972955 1620-1639
CTX-M9-AS TCC TTC AAC TCA GCA AAA GT AJ972955 2552-2533
CTX-M19-Rf CCG TTG CAC TCT CTT TGT CA AJ972955 1658-1639
TEM-S ATA AAA TTC TTG AAG ACG AAA AB103506 166-186
TEM-AS GAC AGT TAC CAA TGC TTA ATC A AB103506 1245-1225
SHV/F CGC CGG GTT ATT CTT ATT TGT CGC X04515 215-238
SHV/R TCT TTC CGA TGC CGC CGC CAG TCA X04515 1223-1204
ISEcp1-F ATC TAA CAT CAA ATG CAG G AF458080 4958-4976
ISEcp1-R AGA CTG CTT CTC ACA CAT AF458080 6338-6321
ISEcp1-M TGT CGT ATC TCG CGT ACT GAA AF458080 5754-5774
ISEcp1-R-P2 TTT CCG CAG CAC CGT TTG C AF458080 5497-5479
PROM-P4 TGC TCT GTG GAT AAC TTG C AF458080 6218-6236
ISEcp1-TNPF TTG GGC GAA TGA AGC CGT GT AF550415 2680-2699
IS903-F CAC ATG AAA TCA TCT GCG C AF458080 7863-7881
IS903-R CCG TAG CGG GTT GTG TTT TC AF458080 8335-8316
IS903-R2 G CGC AGA TGA TTT CAT GTG AF458080 7881-7863
IS903-5′-F CTA CGG CAC CAC CAA TGA TA AJ972954 2360-2379
IS903-5′-R CAT CAT CCA GCC AGA AAG TT AJ972954 2680-2661
IS26tnpA-3′F AGC GGT AAA TCG TGG AGT GA AM003906 540-559
IS26-2F CCG GCC TTT GAA TGG GTT CAT AM003906 667-687
IS26-2R ATG AAC CCA TTC AAA GGC CGG AM003906 687-667
Orf477-F ACT TCA AAA ATT ATG CCA CC AM003906 2531-2550
Orf477-R GG TGG CAT AAT TTT TGA AGT AM003906 2550-2531
mucA lower-R GGC ATC AGG CAG GGG TAA GG AM003906 3312-3293
PemK-up AAC GAG AAT GGC TGG ATG C AF550415 968-986
Table 2.
Antibiotic susceptibility of CTX-M-producing and CTX-M-non-producing Escherichia coliisolated in Korea
Antibiotic CTX-M-producing isolates (n=41) CTX-M-non-producing isolates (n=80) p value
MIC50 (mg/L) MIC90 (mg/L) MIC range (mg/L) S n(%) I n(%) R n(%) MIC50 (mg/L) MIC90 (mg/L) MIC range (mg/L) S n(%) I n(%) R n(%) S I R
cefotaxime 512 >512 32->512 0(0) 0(0) 41(100) 0.064 3 0.023-32 60(75.0) 12(15.0) 8(10.0) <0.001 0.008a <0.001
cefotaxime-clavulanate 2 4 025->256 10(24.4) 30(73.2) 1(2.4) 0.064 3 0.023-256 65(81.3) 7(8.7) 8 (10.0) <0.001 <0.001 0.270a
ceftazidime 2 64 0.064->512 23(56.1) 3(7.3) 15(36.6) 1 8 0.016-64 71(88.8) 4(5.0) 5(6.2) <0.001 0.688a <0.001
ceftazidime- clavulanate 0.5 1 0.125->512 38(92.7) 2(4.9) 1(2.4) 0.5 4 0.023-32 72(90.0) 4(5.0) 4(5.0) 0.748a 0.661a 1.000a
imipenem 0.5 0.5 0.125-2 39(95.1) 2(4.9) 0(0) 0.5 1 0.023-2 74(92.5) 6(7.5) 0(0) 0.715a 0.715a  
aztreonam 8 256 0.064->256 13(31.7) 9(22.0) 19(46.3) 0.5 2 0.064-16 75(93.8) 3(3.7) 2(2.5) <0.001 0.003a <0.001
ampicillin >512 >512 1->512 2(4.9) 0(0) 39(95.1) 256 >512 0.125->512 36(45.0) 2(2.5) 42(52.5) <0.001 0.548a <0.001
nalidixic acid >256 >256 4->256 4(9.8) 0(0) 37(90.2) 16 >256 4->256 39(48.8) 2(2.5) 39(48.8) <0.001 0.548a <0.001
ciprofloxacin >64 >64 0.008->64 9(22.0) 0(0) 32(78.0) 0.004 >64 0.004->64 54(67.5) 3(3.7) 23(28.8) <0.001 0.550a <0.001
chloramphenicol 2 >512 0.25->512 34(82.9) 2(4.9) 5(12.2) 2 4 0.5->512 76(93.1) 1(1.1) 3(5.8) 0.043a 0.265a 0.119a
tetracycline 8 >512 1->512 20(48.8) 3(7.3) 18(43.9) 8 >512 0.5->512 37(46.3) 26(32.5) 17(21.2) 0.792 0.002 0.009
streptomycin 32 >256 4->256 11(26.8) 8(19.5) 22(53.7) 8 128 1->256 48(60.0) 15(18.8) 17(21.2) 0.001 0.919 <0.001
amikacin 8 64 0.25->512 33(80.5) 2(4.9) 6(14.6) 4 8 0.25-8 80(100) 0(0) 0(0) <0.001a 0.113 0.001a
tobramycin 1 128 0.064->512 22(53.7) 1(2.4) 18(43.9) 0.5 8 0.125->512 67(83.8) 8(10.0) 5(6.2) <0.001 0.270a <0.001
kanamycin 32 >512 2->512 17 (41.5) 8(19.5) 16(39.0) 16 32 4->512 61(76.3) 14(17.5) 5(6.2) <0.001 0.786 <0.001
gentamicin 1 >512 0.125->512 21(51.2) 2(4.9) 18(43.9) 0.5 >512 0.064->512 66(82.6) 1(1.1) 13(16.3) <0.001 0.265a 0.001
sulfamethoxazol-trimethoprim >320 >320 20->320 18(43.9) 1(2.4) 22(53.7) 20 >320 10->320 56(70.0) 1(1.1) 23(28.8) 0.005 1.000a 0.007

S, susceptible; I, intermediate; R, resistant. The p value was computed using the chi-square test;

a Fisher's exact test.

Table 3.
Antibiotic susceptibility of CTX-M-14-producing and CTX-M-27-producing Escherichia coliisolated in Korea
Antibiotic CTX-M-14-producing isolates (n=18) CTX-M-27-producing isolates (n=5) p valuea
MIC50 (mg/L) MIC90 (mg/L) MIC range (mg/L) S n(%) I n(%) R n(%) MIC50 (mg/L) MIC90 (mg/L) MIC range (mg/L) S n(%) I n(%) R n(%) S I R
cefotaxime 256 >512 63->512 0(0) 0(0) 18(100) >512 >512 >512 0(0) 0(0) 5(100) . . .
cefotaxime-clavulanate 2 4 05->256 5(27.8) 13(72.2) 0(0) 2 4 2-4 1(20) 4(80.0) 0(0) 1.000 1.000 .
ceftazidime 2 16 0.25-128 14(77.8) 2(11.1) 2(11.1) 32 64 0.5-64 1(20.0) 1(20.0) 3(60.0) 0.033 0.539 0.048
ceftazidime- clavulanate 1 8 0.125-64 16(88.9) 1(5.6) 1(5.6) 0.5 1 0.25-1 5(100) 0(0) 0(0) 1.000 1.000 1.000
imipenem 0.5 2 0.125-2 16(88.9) 2(11.1) 0(0) 0.25 0.5 0.125-0.5 5(100) 0 (0) 0(0) 1.000 1.000 .
aztreonam 8 128 0.125->256 8(44.4) 6(33.3) 4(22.2) 32 64 0.25-64 1(20.0) 1(20.0) 3(60.0) 0.611 1.000 0.142
ampicillin >512 >512 1->512 2(11.1) 0(0) 16(88.9) >512 >512 >512 0(0) 0(0) 5(100) 1.000 . 1.000
nalidixic acid >256 >256 4->256 3(16.7) 0(0) 15(83.3) >256 >256 128->256 0(0) 0(0) 5(100) 1.000 . 1.000
ciprofloxacin 16 >64 0.008->64 6(33.3) 0(0) 12(66.7) >64 >64 0.25->64 2(40.0) 0(0) 3(60.0) 1.000 . 1.000
chloramphenicol 2 >512 0.25->512 16(88.9) 0(0) 2(11.1) 1 2 0.5-2 5(100) 0(0) 0(0) 1.000   1.000
tetracycline 4 >512 1->512 11(61.1) 2(11.1) 5(27.8) >512 >512 4->512 2(40.0) 0(0) 3(60.0) 0.618 1.000 0.297
streptomycin 16 >256 4->256 5(27.8) 5(27.8) 8(44.4) >256 >256 32- >256 0(0) 0(0) 5(100) 0.545 0.545 0.046
amikacin 4 8 0.25->512 17(94.4) 0(0) 1(5.6) 8 8 2-8 5(100) 0(0) 0(0) 1.000 . 1.000
tobramycin 2 32 0.064- 32 10(55.6) 0(0) 8(44.4) 0.5 1 0.25-1 5(100) 0(0) 0(0) 0.122 . 0.122
kanamycin 32 64 2->512 9 (50.0) 7(38.9) 2 (11.1) 16 16 8-16 5(100) 0(0) 0(0) 0.116 0.272 1.000
gentamicin 128 >512 0.125->512 8(44.4) 1 (5.6) 9(50.0) 0.5 1 0.25-1 5(100) 0(0) 0(0) 0.046 1.000 0.116
sulfamethoxazol-trimethoprim >320 >320 10->320 9(50.0) 0 (0) 9(50.0) >320 >320 40->320 1(20.0) 0(0) 4(80.0) 0.339 . 0.339

S, susceptible; I, intermediate; R, resistant.

a The p value was computed using the Fisher's exact test.

Table 4.
Antibiotic susceptibility of CTX-M group 1-producing and CTX-M group 9-producing Escherichia coliisolated in Korea
Antibiotic CTX-M group 1-producing isolates (n=18) CTX-M group 9-producing isolates (n=23) p value
MIC50 (mg/L) MIC90 (mg/L) MIC range (mg/L) S n(%) I n(%) R n(%) MIC50 (mg/L) MIC90 (mg/L) MIC range (mg/L) S n(%) I n(%) R n(%) S I R
cefotaxime >512 >512 32- >512 0(0) 0(0) 18(100) 256 >512 64- >512 0(0) 0(0) 23(100) . . .
cefotaxime-clavulanate 2 4 0.25-256 4(22.2) 13(72.2) 1(5.5) 2 2 0.5- 256 6(26.1) 17(73.9) 0 (0) 1.000a 1.000a 0.44a
ceftazidime 32 128 0.064->512 8(44.4) 0(0) 10(55.6) 2 32 0.25-128 15(65.2) 3(13.0) 5(21.7) 0.219 0.243a 0.049
ceftazidime- clavulanate 0.5 1 0.25-1 17(94.4) 1(5.5) 0(0) 0.5 1 0.125-64 21(91.3) 1(4.3) 1(4.3) 1.000a 1.000a 1.000a
imipenem 0.5 0.5 0.125- 0.5 18(100) 0(0) 0(0) 0.25 0.5 0.125-2 21(91.3) 2 (8.7) 0(0) 0.495a 0.495a .
aztreonam 64 >256 0.064->256 4(22.2) 2(11.1) 12(66.7) 8 64 0.125-256 9(39.1) 7(30.4) 7(30.4) 0.321 0.254a 0.030
ampicillin >512 >512 >512 0(0) 0(0) 18(100) >512 >512 1->512 2(8.7) 0(0) 21(91.3) 0.495a . 0.495a
nalidixic acid >256 >256 4->256 1(5.5) 0(0) 17(94.4) >256 >256 4->256 3(13.0) 0(0) 20(87.0) 0.618a . 0.618a
ciprofloxacin >64 >64 0.012->64 3(16.7) 0(0) 15(83.3) 12 >64 0.008->64 8(34.8) 0(0) 15(65.2) 0.291a . 0.291a
chloramphenicol 2 >512 1->512 13(72.2) 2(11.1) 3(16.7) 1 4 0.25->512 21(91.3) 0(0) 2(8.7) 0.209a 0.187a 0.638a
tetracycline >512 >512 1->512 7(38.9) 1(5.5) 10(55.5) 4 >512 1->512 13(56.5) 2(8.7) 8(34.8) 0.262 1.000a 0.183
streptomycin 16 >256 4->256 6(33.3) 3(16.7) 9(50.0) 32 >256 4- >256 5(21.7) 5(21.7) 13(56.5) 0.489a 1.000a 0.678
amikacin 8 >512 0.25->512 11(61.1) 2(11.1) 5(27.8) 4 8 0.25->512 22(95.7) 0(0) 1(4.3) 0.013a 0.187a 0.070a
tobramycin 16 >512 0.064->512 7 (38.9) 1(5.5) 10(55.5) 0.5 32 0.064-32 15(65.2) 0(0) 8(34.8) 0.093 0.439a 0.183
kanamycin 128 >512 8->512 3 (16.7) 1(5.5) 14 (77.8) 16 32 2- >512 14(60.9) 7(30.4) 2(8.7) 0.004a 0.059a <0.001
gentamicin 8 >512 0.125->512 8(44.4) 1 (5.5) 9(50.0) 0.5 >512 0.125->512 13(56.5) 1(4.3) 9(39.1) 0.443 1.000a 0.486
sulfamethoxazol-trimethoprim 60 >320 10->320 8(44.4) 1 (5.5) 9(50.0) >320 >320 10->320 10(43.5) 0(0) 13(56.5) 0.951 0.439a 0.678

S, susceptible; I, intermediate; R, resistant. The p value was computed using the chi-square test.

a Fisher's exact test.

Table 5.
Genotypic characterization of bla CTX-M surrounding DNAs of CTX-M group 1-producing Escherichia coliisolated in Korea
Strain CTX-M identified by sequencing Upstream bla CTX-M Downstream bla CTX-M
tnpA pemK TD IRL tnpA Promoter IRR Spacea Size (bp) Spacea orf477 IRR-like TD mucA
IS26 start   ISEcp1B ISEcp1B bla CTX-M ISEcp1B (bp) bla CTX-M (bp)   ISEcp1B    
JE120 CTX-M-3 - + + + + + + 127 876 46 + + + +
JE125 CTX-M-3 - + + + + + + 127 876 46 + + + -
JE64 CTX-M-3 + - - - T + + 127 876 46 + + + -
JE62 CTX-M-3 - - - - T + + 127 876 46 + + + -
JE36 CTX-M-15 + - - - T + + 48 876 46 + + + -
JE56 CTX-M-15 - - + + + + + 48 876 46 + + + -
JE77 CTX-M-15 - - - - T + + 48 876 46 + + + -
JE28 CTX-M-15 - - - - T + + 48 876 46 + + + -
JE11 CTX-M-55 - - + + + + + 45 876 46 + + + -

TD, Target duplication of ISEcp1B; IRL, Inverted repeat left; IRR, Inverted repeat right; T, Truncated in upstream sequence of the gene

a Space between IRR and start codon of bla CTX-M gene

b Space between stop codons of bla CTX-M gene and orf477

Table 6.
Genotypic characterization of bla CTX-M surrounding DNAs of CTX-M group 9-producing Escherichia coliisolated in Korea
Strain CTX-M identified by sequencing Upstream bla CTX-M Downstream bla CTX-M
IRR tnpA TD IRL tnpA Promoter IRR Spacea Size (bp) Spaceb IS903D iron IRR-like TD tnpA
IS26 IS26   ISEcp1B ISEcp1B bla CTX-M ISEcp1B (bp) bla CTX-M (bp)     ISEcp1B   IS26
JE45 CTX-M-14 - - + + + + + 42 876 79 Td - - - -
JE121 CTX-M-14 - - - - Tc + + 42 876 79 Td - - - -
JE123 CTX-M-14 + + - - Tc + + 42 876 79 Td - - - -
JE124 CTX-M-14 + + - - Tc + + 42 876 79 Td - - - -
JE22 CTX-M-27 + + - - Tc + + 42 876 79 Td - - - +
JE78 CTX-M-27 + + - - Tc + + 42 876 79 + + + + Td
JE80 CTX-M-27 + + - - Tc + + 42 876 79 Td - - - -

TD, Target duplication of ISEcp1B; IRL, Inverted repeat left; IRR, Inverted repeat right

a Space between IRR and start codon of bla CTX-M gene

b Space between stop codon of bla CTX-M gene and start codon of IS903DtnpA

c Truncated in upstream sequence of the gene

d Truncated in downstream sequence of the gene.

TOOLS
Similar articles