1. Butler JM, Hill CR. Biology and genetics of new autosomal STR loci useful for forensic DNA analysis. Forensic Sci Rev. 2012; 24:15–26.
2. Bieber FR, Brenner CH, Lazer D. Human genetics: finding criminals through DNA of their relatives. Science. 2006; 312:1315–1316.
3. Myers SP, Timken MD, Piucci ML, et al. Searching for first-degree familial relationships in California's offender DNA database: validation of a likelihood ratio-based approach. Forensic Sci Int Genet. 2011; 5:493–500.
4. Schneider PM. Scientific standards for studies in forensic genetics. Forensic Sci Int. 2007; 165:238–243.
5. Lee JW, Lee HS, Lee HJ, et al. Statistical evaluation of sibling relationship. Commun Stat Appl Methods. 2007; 14:541–549.
6. Jeong SJ, Lee JW, Lee SD, et al. Statistical evaluation of common relationships using STR markers in Korean population. Korean Acad Sci Crim Invest. 2016; 10:107–115.
7. Evett IW, Weir BS. Interpreting DNA evidence: statistical genetics for forensic scientists. Sunderland: Sinauer Associates;1998.
8. Yang IS, Lee HY, Park SJ, et al. Analysis of Kinship Index distributions in Koreans using simulated autosomal STR profiles. Korean J Leg Med. 2013; 37:57–65.
9. Gaytmenn R, Hildebrand DP, Sweet D, et al. Determination of the sensitivity and specificity of sibship calculations using AmpF lSTR Profiler Plus. Int J Legal Med. 2002; 116:161–164.
10. Budowle B, Shea B, Niezgoda S, et al. CODIS STR loci data from 41 sample populations. J Forensic Sci. 2001; 46:453–489.
11. Cowen S, Thomson J. A likelihood ratio approach to familial searching of large DNA databases. Forensic Sci Int Genet Suppl Ser. 2008; 1:643–645.
12. Curran JM, Buckleton JS. Effectiveness of familial searches. Sci Justice. 2008; 48:164–167.
13. Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B Methodol. 1958; 20:215–242.
14. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugen. 1936; 7:179–188.
15. Bickel PJ, Levina E. Some theory for Fisher's linear discriminant function, ‘naive Bayes’, and some alternatives when there are many more variables than observations. Bernoulli. 2004; 10:989–1010.
16. Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc. 2002; 97:77–87.
17. Vapnik VN. The nature of statistical learning theory. Berlin: Springer;2000.
18. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Monterey: Wadsworth & Brooks/Cole Advanced Books & Software;1984.
19. Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat. 1992; 46:175–185.
20. Breiman L. Random forests. Mach Learn. 2001; 45:5–32.
21. Witten DM, Tibshirani R, Hastie T. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics. 2009; 10:515–534.
22. Buckleton JS, Triggs CM, Walsh SJ. DNA evidence. Boca Raton: CRC Press;2004.