1. World Health Organisation (WHO). Global Tuberculosis Report 2018. Geneva: WHO;2018.
2. Andersen P, Scriba TJ. Moving tuberculosis vaccines from theory to practice. Nat Rev Immunol. 2019.
3. Ottenhoff TH. The knowns and unknowns of the immunopathogenesis of tuberculosis. Int J Tuberc Lung Dis. 2012; 16:1424–1432.
4. Achkar JM, Casadevall A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe. 2013; 13:250–262.
5. Jacobs AJ, Mongkolsapaya J, Screaton GR, McShane H, Wilkinson RJ. Antibodies and tuberculosis. Tuberculosis (Edinb). 2016; 101:102–113.
6. Scolnik PA. mAbs: a business perspective. MAbs. 2009; 1:179–184.
7. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995; 346:1339–1345.
8. Freer G, Pistello M. Varicella-zoster virus infection: natural history, clinical manifestations, immunity and current and future vaccination strategies. New Microbiol. 2018; 41:95–105.
9. Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V. A functional role for antibodies in tuberculosis. Cell. 2016; 167:433–443.e14.
10. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013; 14:327–336.
11. Li H, Wang XX, Wang B, Fu L, Liu G, Lu Y, Cao M, Huang H, Javid B. Latently and uninfected healthcare workers exposed to TB make protective antibodies against
Mycobacterium tuberculosis
. Proc Natl Acad Sci U S A. 2017; 114:5023–5028.
12. Overdijk MB, Verploegen S, Ortiz Buijsse A, Vink T, Leusen JH, Bleeker WK, Parren PW. Crosstalk between human IgG isotypes and murine effector cells. J Immunol. 2012; 189:3430–3438.
13. Zimmermann N, Thormann V, Hu B, Köhler AB, Imai-Matsushima A, Locht C, Arnett E, Schlesinger LS, Zoller T, Schürmann M, et al. Human isotype-dependent inhibitory antibody responses against
Mycobacterium tuberculosis
. EMBO Mol Med. 2016; 8:1325–1339.
14. Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M, et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A. 2011; 108:12669–12674.
15. Kumagai T, Palacios A, Casadevall A, García MJ, Toro C, Tiemeyer M, Prados-Rosales R. Serum IgM glycosylation associated with tuberculosis infection in mice. mSphere. 2019; 4:e00684-18.
16. Williams A, Reljic R, Naylor I, Clark SO, Falero-Diaz G, Singh M, Challacombe S, Marsh PD, Ivanyi J. Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology. 2004; 111:328–333.
17. Reljic R, Clark SO, Williams A, Falero-Diaz G, Singh M, Challacombe S, Marsh PD, Ivanyi J. Intranasal IFNgamma extends passive IgA antibody protection of mice against
Mycobacterium tuberculosis lung infection. Clin Exp Immunol. 2006; 143:467–473.
18. Balu S, Reljic R, Lewis MJ, Pleass RJ, McIntosh R, van Kooten C, van Egmond M, Challacombe S, Woof JM, Ivanyi J. A novel human IgA monoclonal antibody protects against tuberculosis. J Immunol. 2011; 186:3113–3119.
19. Buccheri S, Reljic R, Caccamo N, Meraviglia S, Ivanyi J, Salerno A, Dieli F. Prevention of the post-chemotherapy relapse of tuberculous infection by combined immunotherapy. Tuberculosis (Edinb). 2009; 89:91–94.
20. Vasudeva-Rao HM, McDonough KA. Expression of the
Mycobacterium tuberculosis acr-coregulated genes from the DevR (DosR) regulon is controlled by multiple levels of regulation. Infect Immun. 2008; 76:2478–2489.
21. Yuan Y, Crane DD, Simpson RM, Zhu YQ, Hickey MJ, Sherman DR, Barry CE 3rd. The 16-kDa alpha-crystallin (Acr) protein of
Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci U S A. 1998; 95:9578–9583.
22. van Egmond M, Hanneke van Vuuren AJ, van de Winkel JG. The human Fc receptor for IgA (Fc alpha RI, CD89) on transgenic peritoneal macrophages triggers phagocytosis and tumor cell lysis. Immunol Lett. 1999; 68:83–87.
23. van Vuuren AJ, van Egmond M, Coenen MJ, Morton HC, van de Winkel JG. Characterization of the human myeloid IgA Fc receptor I (CD89) gene in a cosmid clone. Immunogenetics. 1999; 49:586–589.
24. Reljic R. In search of the elusive mouse macrophage Fc-alpha receptor. Immunol Lett. 2006; 107:80–81.
25. Chambers MA, Gavier-Widén D, Hewinson RG. Antibody bound to the surface antigen MPB83 of
Mycobacterium bovis enhances survival against high dose and low dose challenge. FEMS Immunol Med Microbiol. 2004; 41:93–100.
26. Hamasur B, Haile M, Pawlowski A, Schroder U, Kallenius G, Svenson SB. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab') fragment prolong survival of mice infected with
Mycobacterium tuberculosis
. Clin Exp Immunol. 2004; 138:30–38.
27. Teitelbaum R, Glatman-Freedman A, Chen B, Robbins JB, Unanue E, Casadevall A, Bloom BR. A mAb recognizing a surface antigen of
Mycobacterium tuberculosis enhances host survival. Proc Natl Acad Sci U S A. 1998; 95:15688–15693.
28. de Vallière S, Abate G, Blazevic A, Heuertz RM, Hoft DF. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun. 2005; 73:6711–6720.
29. Guirado E, Amat I, Gil O, Díaz J, Arcos V, Caceres N, Ausina V, Cardona PJ. Passive serum therapy with polyclonal antibodies against
Mycobacterium tuberculosis protects against post-chemotherapy relapse of tuberculosis infection in SCID mice. Microbes Infect. 2006; 8:1252–1259.
30. Pethe K, Alonso S, Biet F, Delogu G, Brennan MJ, Locht C, Menozzi FD. The heparin-binding haemagglutinin of
M. tuberculosis is required for extrapulmonary dissemination. Nature. 2001; 412:190–194.
31. Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A, Lowary TL, Baena A, Joe M, Bai Y, et al. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog. 2017; 13:e1006250.
32. Copland A, Diogo GR, Hart P, Harris S, Tran AC, Paul MJ, Singh M, Cutting SM, Reljic R. Mucosal delivery of fusion proteins with
Bacillus subtilis spores enhances protection against tuberculosis by Bacillus Calmette-Guérin. Front Immunol. 2018; 9:346.
33. Dietrich J, Andersen C, Rappuoli R, Doherty TM, Jensen CG, Andersen P. Mucosal administration of Ag85B-ESAT-6 protects against infection with
Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J Immunol. 2006; 177:6353–6360.
34. D'Souza S, Rosseels V, Romano M, Tanghe A, Denis O, Jurion F, Castiglione N, Vanonckelen A, Palfliet K, Huygen K. Mapping of murine Th1 helper T-cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis
. Infect Immun. 2003; 71:483–493.
35. Geluk A, van Meijgaarden KE, Franken KL, Drijfhout JW, D'Souza S, Necker A, Huygen K, Ottenhoff TH. Identification of major epitopes of
Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol. 2000; 165:6463–6471.
36. Hart P, Copland A, Diogo GR, Harris S, Spallek R, Oehlmann W, Singh M, Basile J, Rottenberg M, Paul MJ, et al. Nanoparticle-fusion protein complexes protect against
Mycobacterium tuberculosis infection. Mol Ther. 2018; 26:822–833.
37. van Dissel JT, Soonawala D, Joosten SA, Prins C, Arend SM, Bang P, Tingskov PN, Lingnau K, Nouta J, Hoff ST, et al. Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived
Mycobacterium tuberculosis specific T cell responses in volunteers with previous BCG vaccination or tuberculosis infection. Vaccine. 2011; 29:2100–2109.
38. Ernst JD, Cornelius A, Bolz M. Dynamics of
Mycobacterium tuberculosis Ag85B revealed by a sensitive enzyme-linked immunosorbent assay. MBio. 2019; 10:e00611-19.
39. Chen T, Blanc C, Eder AZ, Prados-Rosales R, Souza AC, Kim RS, Glatman-Freedman A, Joe M, Bai Y, Lowary TL, et al. Association of human antibodies to arabinomannan with enhanced mycobacterial opsonophagocytosis and intracellular growth reduction. J Infect Dis. 2016; 214:300–310.
40. Armstrong JA, Hart PD. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med. 1975; 142:1–16.
41. Vergne I, Chua J, Singh SB, Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol. 2004; 20:367–394.
42. Coppola M, Arroyo L, van Meijgaarden KE, Franken KL, Geluk A, Barrera LF, Ottenhoff TH. Differences in IgG responses against infection phase related
Mycobacterium tuberculosis (Mtb) specific antigens in individuals exposed or not to Mtb correlate with control of TB infection and progression. Tuberculosis (Edinb). 2017; 106:25–32.
43. Grosset J.
Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother. 2003; 47:833–836.
44. Brady LJ. Antibody-mediated immunomodulation: a strategy to improve host responses against microbial antigens. Infect Immun. 2005; 73:671–678.
45. Pepponi I, Stylianou E, van Dolleweerd C, Diogo GR, Paul MJ, Drake PM, Ma JK, Reljic R. Immune-complex mimics as a molecular platform for adjuvant-free vaccine delivery. PLoS One. 2013; 8:e60855.
46. Reljic R. IFN-gamma therapy of tuberculosis and related infections. J Interferon Cytokine Res. 2007; 27:353–364.
47. Khera AK, Afkhami S, Lai R, Jeyanathan M, Zganiacz A, Mandur T, Hammill J, Damjanovic D, Xing Z. Role of B cells in mucosal vaccine-induced protective CD8+ T cell immunity against pulmonary tuberculosis. J Immunol. 2015; 195:2900–2907.
48. Vordermeier HM, Venkataprasad N, Harris DP, Ivanyi J. Increase of tuberculous infection in the organs of B cell-deficient mice. Clin Exp Immunol. 1996; 106:312–316.
49. Phuah JY, Mattila JT, Lin PL, Flynn JL. Activated B cells in the granulomas of nonhuman primates infected with
Mycobacterium tuberculosis
. Am J Pathol. 2012; 181:508–514.
50. Loxton AG. Bcells and their regulatory functions during tuberculosis: latency and active disease. Mol Immunol. 2019; 111:145–151.