1. Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016; 134:441–450.
2. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006; 367:1747–1757.
![crossref](/image/icon/bnr_ref_cross.gif)
3. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2018; 138:e484–594.
4. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018; 39:3021–3104.
5. Korean Society Hypertension (KSH). Hypertension Epidemiology Research Working Group. Kim HC, Cho MC. Korea hypertension fact sheet 2018. Clin Hypertens. 2018; 24:13.
![crossref](/image/icon/bnr_ref_cross.gif)
6. Li Y, Wang JG. Isolated nocturnal hypertension: a disease masked in the dark. Hypertension. 2013; 61:278–283.
7. Asayama K, Fujiwara T, Hoshide S, et al. Nocturnal blood pressure measured by home devices: evidence and perspective for clinical application. J Hypertens. 2019; 37:905–916.
8. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011; 57:3–10.
![crossref](/image/icon/bnr_ref_cross.gif)
9. Fan HQ, Li Y, Thijs L, et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J Hypertens. 2010; 28:2036–2045.
![crossref](/image/icon/bnr_ref_cross.gif)
10. Head GA. The importance and prognostic value of nocturnal blood pressure assessments using inexpensive domestic devices. J Hypertens. 2017; 35:463–465.
![crossref](/image/icon/bnr_ref_cross.gif)
11. Kario K. Nocturnal hypertension: new technology and evidence. Hypertension. 2018; 71:997–1009.
12. Fagard RH, Celis H, Thijs L, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008; 51:55–61.
![crossref](/image/icon/bnr_ref_cross.gif)
13. Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors of all-cause mortality in clinical ambulatory monitoring: unique aspects of blood pressure during sleep. Hypertension. 2007; 49:1235–1241.
14. ABC-H Investigators, Roush GC, Fagard RH, et al. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13,844 patients with hypertension. J Hypertens. 2014; 32:2332–2340.
![crossref](/image/icon/bnr_ref_cross.gif)
15. Yano Y, Kario K. Nocturnal blood pressure and cardiovascular disease: a review of recent advances. Hypertens Res. 2012; 35:695–701.
![crossref](/image/icon/bnr_ref_cross.gif)
16. O'Brien E, Sheridan J, O'Malley K. Dippers and non-dippers. Lancet. 1988; 2:397.
17. Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension. 2001; 38:852–857.
![crossref](/image/icon/bnr_ref_cross.gif)
18. Boggia J, Thijs L, Hansen TW, et al. Ambulatory blood pressure monitoring in 9357 subjects from 11 populations highlights missed opportunities for cardiovascular prevention in women. Hypertension. 2011; 57:397–405.
![crossref](/image/icon/bnr_ref_cross.gif)
19. Ohkubo T, Hozawa A, Yamaguchi J, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002; 20:2183–2189.
20. Boggia J, Li Y, Thijs L, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007; 370:1219–1229.
![crossref](/image/icon/bnr_ref_cross.gif)
21. Lee HY, Shin J, Kim GH, et al. 2018 Korean Society of Hypertension Guidelines for the management of hypertension: part II-diagnosis and treatment of hypertension. Clin Hypertens. 2019; 25:20.
![crossref](/image/icon/bnr_ref_cross.gif)
22. Li Y, Staessen JA, Lu L, Li LH, Wang GL, Wang JG. Is isolated nocturnal hypertension a novel clinical entity? Findings from a Chinese population study. Hypertension. 2007; 50:333–339.
23. Thomas SJ, Booth JN 3rd, Bromfield SG, et al. Clinic and ambulatory blood pressure in a population-based sample of African Americans: the Jackson Heart Study. J Am Soc Hypertens. 2017; 11:204–212.e5.
![crossref](/image/icon/bnr_ref_cross.gif)
24. Melgarejo JD, Maestre GE, Thijs L, et al. Prevalence, treatment, and control rates of conventional and ambulatory hypertension across 10 populations in 3 continents. Hypertension. 2017; 70:50–58.
![crossref](/image/icon/bnr_ref_cross.gif)
25. Sakhuja S, Booth JN 3rd, Lloyd-Jones DM, et al. Health behaviors, nocturnal hypertension, and non-dipping blood pressure: the coronary artery risk development in young adults and Jackson Heart Study. Am J Hypertens. 2019; 32:759–768.
![crossref](/image/icon/bnr_ref_cross.gif)
26. de la Sierra A, Gorostidi M, Banegas JR, Segura J, de la Cruz JJ, Ruilope LM. Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile? Am J Hypertens. 2014; 27:680–687.
![crossref](/image/icon/bnr_ref_cross.gif)
27. Hoshide S, Kario K, de la Sierra A, et al. Ethnic differences in the degree of morning blood pressure surge and in its determinants between Japanese and European hypertensive subjects: data from the ARTEMIS study. Hypertension. 2015; 66:750–756.
28. Hosohata K, Kikuya M, Ohkubo T, et al. Reproducibility of nocturnal blood pressure assessed by self-measurement of blood pressure at home. Hypertens Res. 2007; 30:707–712.
![crossref](/image/icon/bnr_ref_cross.gif)
29. Ushio H, Ishigami T, Araki N, et al. Utility and feasibility of a new programmable home blood pressure monitoring device for the assessment of nighttime blood pressure. Clin Exp Nephrol. 2009; 13:480–485.
![crossref](/image/icon/bnr_ref_cross.gif)
30. Ishikawa J, Hoshide S, Eguchi K, et al. Nighttime home blood pressure and the risk of hypertensive target organ damage. Hypertension. 2012; 60:921–928.
![crossref](/image/icon/bnr_ref_cross.gif)
31. Kario K, Tomitani N, Kanegae H, et al. Comparative effects of an angiotensin II receptor blocker (ARB)/diuretic vs. ARB/calcium-channel blocker combination on uncontrolled nocturnal hypertension evaluated by information and communication technology-based nocturnal home blood pressure monitoring- the NOCTURNE study. Circ J. 2017; 81:948–957.
32. Andreadis EA, Agaliotis G, Kollias A, Kolyvas G, Achimastos A, Stergiou GS. Night-time home versus ambulatory blood pressure in determining target organ damage. J Hypertens. 2016; 34:438–444.
![crossref](/image/icon/bnr_ref_cross.gif)
33. Lindroos AS, Johansson JK, Puukka PJ, et al. The association between home vs. ambulatory night-time blood pressure and end-organ damage in the general population. J Hypertens. 2016; 34:1730–1737.
![crossref](/image/icon/bnr_ref_cross.gif)
34. Kuwabara M, Harada K, Hishiki Y, Kario K. Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL. J Clin Hypertens (Greenwich). 2019; 21:853–858.
![crossref](/image/icon/bnr_ref_cross.gif)
35. Kollias A, Ntineri A, Stergiou GS. Association of night-time home blood pressure with night-time ambulatory blood pressure and target-organ damage: a systematic review and meta-analysis. J Hypertens. 2017; 35:442–452.
36. Carek AM, Conant J, Joshi A, Kang H, Inan OT. SeismoWatch: wearable cuffless blood pressure monitoring using pulse transit time. Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017; 1:40.
38. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997; 96:1859–1862.
![crossref](/image/icon/bnr_ref_cross.gif)
39. Kimura G. Kidney and circadian blood pressure rhythm. Hypertension. 2008; 51:827–828.
![crossref](/image/icon/bnr_ref_cross.gif)
40. Kario K. Systemic hemodynamic atherothrombotic syndrome and resonance hypothesis of blood pressure variability: triggering cardiovascular events. Korean Circ J. 2016; 46:456–467.
![crossref](/image/icon/bnr_ref_cross.gif)
41. Wang C, Zhang J, Liu X, et al. Reversed dipper blood-pressure pattern is closely related to severe renal and cardiovascular damage in patients with chronic kidney disease. PLoS One. 2013; 8:e55419.
![crossref](/image/icon/bnr_ref_cross.gif)
42. Liu M, Takahashi H, Morita Y, et al. Non-dipping is a potent predictor of cardiovascular mortality and is associated with autonomic dysfunction in haemodialysis patients. Nephrol Dial Transplant. 2003; 18:563–569.
![crossref](/image/icon/bnr_ref_cross.gif)
43. Legramante JM, Galante A. Sleep and hypertension: a challenge for the autonomic regulation of the cardiovascular system. Circulation. 2005; 112:786–788.
44. Lombardi F, Parati G. An update on: cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovasc Res. 2000; 45:200–211.
![crossref](/image/icon/bnr_ref_cross.gif)
45. Pepin JL, Borel AL, Tamisier R, Baguet JP, Levy P, Dauvilliers Y. Hypertension and sleep: overview of a tight relationship. Sleep Med Rev. 2014; 18:509–519.
![crossref](/image/icon/bnr_ref_cross.gif)
46. Marin JM, Agusti A, Villar I, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012; 307:2169–2176.
![crossref](/image/icon/bnr_ref_cross.gif)
47. Baguet JP, Hammer L, Lévy P, et al. Night-time and diastolic hypertension are common and underestimated conditions in newly diagnosed apnoeic patients. J Hypertens. 2005; 23:521–527.
![crossref](/image/icon/bnr_ref_cross.gif)
48. Haentjens P, Van Meerhaeghe A, Moscariello A, et al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials. Arch Intern Med. 2007; 167:757–764.
49. Turnbull F. Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003; 362:1527–1535.
50. Hoshide S, Ishikawa J, Eguchi K, Ojima T, Shimada K, Kario K. Masked nocturnal hypertension and target organ damage in hypertensives with well-controlled self-measured home blood pressure. Hypertens Res. 2007; 30:143–149.
![crossref](/image/icon/bnr_ref_cross.gif)
51. Komori T, Eguchi K, Tomizawa H, et al. Factors associated with incident ischemic stroke in hospitalized heart failure patients: a pilot study. Hypertens Res. 2008; 31:289–294.
![crossref](/image/icon/bnr_ref_cross.gif)
52. Sega R, Facchetti R, Bombelli M, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005; 111:1777–1783.
![crossref](/image/icon/bnr_ref_cross.gif)
53. Salvetti M, Muiesan ML, Rizzoni D, et al. Night time blood pressure and cardiovascular structure in a middle-aged general population in northern Italy: the Vobarno Study. J Hum Hypertens. 2001; 15:879–885.
![crossref](/image/icon/bnr_ref_cross.gif)
54. Shin J, Xu E, Lim YH, et al. Relationship between nocturnal blood pressure and 24-h urinary sodium excretion in a rural population in Korea. Clin Hypertens. 2014; 20:9.
![crossref](/image/icon/bnr_ref_cross.gif)
55. Lim YH, Enkhdorj R, Kim BK, Kim SG, Kim JH, Shin J. Correlation between proximal abdominal aortic stiffness measured by ultrasound and brachial-ankle pulse wave velocity. Korean Circ J. 2013; 43:391–399.
![crossref](/image/icon/bnr_ref_cross.gif)
56. Kario K. Essential manual of 24-hour blood pressure management from morning to nocturnal hypertension. London: Wiley-Blackwell;2015.
57. Heart Outcomes Prevention Evaluation Study Investigators. Yusuf S, Sleight P, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000; 342:145–153.
![crossref](/image/icon/bnr_ref_cross.gif)
58. Svensson P, de Faire U, Sleight P, Yusuf S, Ostergren J. Comparative effects of ramipril on ambulatory and office blood pressures: a HOPE Substudy. Hypertension. 2001; 38:E28–32.
![crossref](/image/icon/bnr_ref_cross.gif)
59. Hermida RC, Ayala DE. Chronotherapy with the angiotensin-converting enzyme inhibitor ramipril in essential hypertension: improved blood pressure control with bedtime dosing. Hypertension. 2009; 54:40–46.
60. Pareek AK, Messerli FH, Chandurkar NB, et al. Efficacy of low-dose chlorthalidone and hydrochlorothiazide as assessed by 24-h ambulatory blood pressure monitoring. J Am Coll Cardiol. 2016; 67:379–389.
61. Kario K. Proposal of a new strategy for ambulatory blood pressure profile-based management of resistant hypertension in the era of renal denervation. Hypertens Res. 2013; 36:478–484.
![crossref](/image/icon/bnr_ref_cross.gif)
62. Imaizumi Y, Eguchi K, Murakami T, Arakawa K, Tsuchihashi T, Kario K. High salt intake is independently associated with hypertensive target organ damage. J Clin Hypertens (Greenwich). 2016; 18:315–321.
![crossref](/image/icon/bnr_ref_cross.gif)
63. Yasuda G, Hasegawa K, Kuji T, et al. Effects of doxazosin on ambulatory blood pressure and sympathetic nervous activity in hypertensive Type 2 diabetic patients with overt nephropathy. Diabet Med. 2005; 22:1394–1400.
![crossref](/image/icon/bnr_ref_cross.gif)
64. Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos Pivotal Trial. J Am Coll Cardiol. 2011; 58:765–773.
65. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009; 373:1275–1281.
![crossref](/image/icon/bnr_ref_cross.gif)
66. Kario K, Bhatt DL, Kandzari DE, et al. Impact of renal denervation on patients with obstructive sleep apnea and resistant hypertension: insights from the SYMPLICITY HTN-3 trial. Circ J. 2016; 80:1404–1412.
67. Hermida RC, Hermida RC. Ambulatory blood pressure monitoring in the prediction of cardiovascular events and effects of chronotherapy: rationale and design of the MAPEC study. Chronobiol Int. 2007; 24:749–775.
![crossref](/image/icon/bnr_ref_cross.gif)
68. Mahabala C, Kamath P, Bhaskaran U, Pai ND, Pai AU. Antihypertensive therapy: nocturnal dippers and nondippers. Do we treat them differently? Vasc Health Risk Manag. 2013; 9:125–133.
![crossref](/image/icon/bnr_ref_cross.gif)
69. Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010; 27:1629–1651.
![crossref](/image/icon/bnr_ref_cross.gif)
70. Gorostidi M. Effect of Olmesartan-based therapy on therapeutic indicators obtain through out-of-office blood pressure. Cardiol Ther. 2015; 4:19–30.
71. Hermida RC, Ayala DE, Fernández JR, Calvo C. Comparison of the efficacy of morning versus evening administration of telmisartan in essential hypertension. Hypertension. 2007; 50:715–722.
![crossref](/image/icon/bnr_ref_cross.gif)
72. Tofé Povedano S, García De La Villa B. 24-Hour and night time blood pressures in type 2 diabetic hypertensive patients following morning or evening administration of Olmesartan. J Clin Hypertens (Greenwich). 2009; 11:426–431.
73. Matsui Y, Eguchi K, O'Rourke MF, et al. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension. 2009; 54:716–723.
![crossref](/image/icon/bnr_ref_cross.gif)
74. Hermida RC, Ayala DE, Fernández JR, Calvo C. Chronotherapy improves blood pressure control and reverts the nondipper pattern in patients with resistant hypertension. Hypertension. 2008; 51:69–76.
![crossref](/image/icon/bnr_ref_cross.gif)
75. Kario K, Okada K, Kato M, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA Study. Circulation. 2018; 139:2089–2097.
76. American Diabetes Association. 8. Cardiovascular disease and risk management. Diabetes Care. 2016; 39:Suppl 1. S60–S71.
77. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of Medical Care in Diabetes-2019. Diabetes Care. 2019; 42:S103–S123.
78. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371:993–1004.
![crossref](/image/icon/bnr_ref_cross.gif)
79. Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J. 2015; 36:1967–1973.
![crossref](/image/icon/bnr_ref_cross.gif)
80. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes. N Engl J Med. 2015; 373:2117–2128.
![crossref](/image/icon/bnr_ref_cross.gif)