1. Akay MF. Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl. 2009; 36:3240–3247.
2. Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991; 115:843–848.
3. Carbonell JG, Michalski RS, Mitchell TM. An Overview of Machine Learning. Heidelberg: Springer;1983. p. 3–23.
4. Chen CC, Daponte JS, Fox MD. Fractal feature analysis and classification in medical imaging. IEEE Trans Med Imaging. 1989; 8:133–142.
5. Chen EL, Chung PC, Chen CL, Tsai HM, Chang CI. An automatic diagnostic system for CT liver image classification. IEEE Trans Biomed Eng. 1998; 45:783–794.
6. Chen HL, Huang CC, Yu XG, Xu X, Sun X, Wang G, Wang SJ. An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach. Expert Syst Appl. 2013; 40:263–271.
7. Christensen O. Functions, Spaces, and Expansions. 1st ed. Birkhäuser Verlag: Springer;2010. p. 159–180.
8. Cooley JW, Lewis PA, Welch PD. The fast Fourier transform and its applications. IEEE Trans Educ. 1969; 12:27–34.
9. French J. The time traveller’'s CAPM. Invest Anal J. 2017; 46:81–96.
10. Ganesan N, Venkatesh K, Rama M, Palani AM. Application of neural networks in diagnosing cancer disease using demographic data. Int J Comput Appl. 2010; 1:76–85.
11. Gelhar LW, Axness CL. Three‐dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res. 1983; 19:161–180.
12. Gilbert FJ, Astley SM, Gillan MG, Agbaje OF, Wallis MG, James J, Boggis CR, Duffy SW. CADET II Group. Single reading with computer-aided detection for screening mammography. N Engl J Med. 2008; 359:1675–1684.
13. Haralick RM. Statistical and structural approaches to texture. Proc IEEE. 1979; 67:786–804.
14. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973; 3:610–621.
15. Harms H, Gunzer U, Aus HM. Combined local color and texture analysis of stained cells. Comput Vis Graph Image Process. 1986; 33:364–376.
16. Insana MF, Wagner RF, Garra BS, Brown DG, Shawker TH. Analysis of ultrasound image texture via generalized Rician statistics. Opt Eng. 1986; 25:256743.
17. Ji Q, Engel J, Craine E. Texture analysis for classification of cervix lesions. IEEE Trans Med Imaging. 2000; 19:1144–1149.
18. Jiang M, Zhang S, Li H, Metaxas DN. Computer-aided diagnosis of mammographic masses using scalable image retrieval. IEEE Trans Biomed Eng. 2015; 62:783–792.
19. Kadah YM, Farag AA, Zurada JM, Badawi AM, Youssef AM. Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images. IEEE Trans Med Imaging. 1996; 15:466–478.
20. Mahmoud-Ghoneim D, Toussaint G, Constans JM, de Certaines JD. Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging. 2003; 21:983–987.
21. Malon CD, Cosatto E. Classification of mitotic figures with convolutional neural networks and seeded blob features. J Pathol Inform. 2013; 4:9.
22. Mathias JM, Tofts PS, Losseff NA. Texture analysis of spinal cord pathology in multiple sclerosis. Magn Reson Med. 1999; 42:929–935.
23. Polat K, Güneş S. Breast cancer diagnosis using least square support vector machine. Digit Signal Process. 2007; 17:694–701.
24. Ravandi SH, Toriumi K. Fourier transform analysis of plain weave fabric appearance. Text Res J. 1995; 65:676–683.
25. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. A comparative study of data sampling and cost sensitive learning. In : IEEE International Conference on Data Mining Workshops; December 15-19, 2008; Pisa, Italy.
26. Sengupta N, Sahidullah M, Saha G. Lung sound classification using cepstral-based statistical features. Comput Biol Med. 2016; 75:118–129.
27. Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 2011; 41:449–462.
28. Sujana H, Swarnamani S, Suresh S. Application of artificial neural networks for the classification of liver lesions by image texture parameters. Ultrasound Med Biol. 1996; 22:1177–1181.
29. Tobias S, Victoria J. BSAVA Manual of Canine and Feline Thoracic Imaging. Quedgeley: British Small Animal Veterinary Association;2008. p. 250–260.
30. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996; 49:1225–1231.
31. Weszka JS, Dyer CR, Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern. 1976; 6:269–285.
32. Zhang G, Patuwo BE, Hu MY. Forecasting with artificial neural networks: The state of the art. Int J Forecast. 1998; 14:35–62.
33. Zhu C, Yang X. Study of remote sensing image texture analysis and classification using wavelet. Int J Remote Sens. 1998; 19:3197–3203.
34. Zhu Y, Tan T, Wang Y. Font recognition based on global texture analysis. IEEE Trans Pattern Anal Mach Intell. 2001; 23:1192–1200.
35. Zissis D, Xidias EK, Lekkas D. A cloud based architecture capable of perceiving and predicting multiple vessel behaviour. Appl Soft Comput. 2015; 35:652–661.