Journal List > Nat Prod Sci > v.25(2) > 1129694

Musa, Zain, Ibrahim, and Jamil: Evaluation of Acute and Sub-acute Oral Toxicity Effect of Aquilaria malaccensis Leaves Aqueous Extract in Male ICR Mice

Abstract

The study was conducted to investigate the acute and sub-acute toxicity effect of Aquilaria malaccensis leaves aqueous extract (AEAM) towards male ICR mice in terms of body weight, relative organ weight, mortality rate and sperm parameters. In acute toxicity study, a single dose at of 2000 mg/kg was performed. In sub-acute toxicity study, the mice were received normal saline (control group), 50, 100, 150, 200,500, or 1000 mg/kg of AEAM orally for 21 days of treatment. In sub-acute toxicity study, the number of abnormal sperm were significantly decreased in AEAM 100, 150, 200, 500, and 1000 when compared to the control group. While, the motility of sperm were found to be significantly increased in AEAM 100, 150, 200, and 1000 as compared to the control group. No mortality was recorded in the control group and treated groups in both toxicity studies except for one mouse from AEAM 1000 group. However, the mild sedative effect in terms of the tendency to sleep was clearly noticeable in both toxicity studies. Results indicated that the AEAM can be one of the useful alternative medicine to enhance fertility rate by increasing healthy sperm production.

REFERENCES

(1). Redzuan Nul Hakim A. R., Muhammad Lokman M. I., Afzan M. Y., Azantee Yazmie A. W., Hussin M., Roszaman R. J.Biotechnol. Strategic Health Res. 2017; 1:17–23.
(2). Parandin R., Yousofvand N., Ghorbani R.Iran J. Reprod. Med. 2012; 10:355–362.
(3). Agnes V. F., Akbarsha M. A.Food Chem. Toxicol. 2003; 41:119–130.
(4). Chauhan N. S., Dixit V. K.Int. J. Appl. Res. Nat. Prod. 2008; 1:26–31.
(5). Ekaluo U. B., Erem F. A., Omeje I. S., Ikpeme E. V., Ibiang Y. B., Ekanem B. E.IOSR J. Environ. Sci. Toxicol. Food Technol. 2013; 3:21–23.
(6). Wahab N. A., Mokhtar N. M., Halim W. N., Das S.Clinics. 2010; 65:93–98.
(7). Mahmoud A. S. F., Noor M. M.AIP Conf. Proc. 2013; 1571:227–233.
(8). Nor-Raidah R., Mahanem M. N.Malays. Appl. Biol. 2015; 44:125–131.
(9). Hakim P., Sani H. A., Noor M. M.Malaysian J. Biochem. Mol. Biol. 2008; 16:10–14.
(10). Giribabu N., Kumar K. E., Rekha S. S., Muniandy S., Salleh N.BMC Complement. Altern. Med. 2014; 14:291.
(11). Parhizkar S., Yusoff M. J., Dollah M. A.Adv. Pharm. Bull. 2013; 3:345–352.
(12). Idris M. H., Budin S. B., Osman M., Mohamed J.EXCLI J. 2012; 11:659–669.
(13). Fatmawati , Hidayat R.Eur. J. Pharm. Med. Res. 2016; 3:46–49.
(14). Bahrani H., Mohamad J., Paydar M. J., Rothan H. A.Curr. Alzheimer Res. 2014; 11:206–214.
(15). Hara H., Ise Y., Morimoto N., Shimazawa M., Ichihashi K., Ohyama M., Iinuma M.Biosci. Biotechnol. Biochem. 2008; 72:335–345.
(16). Kakino M., Tazawa S., Maruyama H., Tsuruma K., Araki Y., Shimazawa M., Hara H.BMC Complement. Altern. Med. 2010; 10:68.
(17). Zhou M., Wang H., Suolangjiba Kou J., Yu B. J.Ethnopharmacol. 2008; 117:345–350.
(18). Dash M., Patra J. K., Panda P. P. Afr. J.Biotechnol. 2008; 7:3531–3534.
(19). Begum Y.Pharma Tutor. 2016; 4:47–50.
(20). Pranakhon R., Pannangpetch P., Aromdee C. Songklanakarin. J.Sci. Technol. 2011; 33:405–410.
(21). Ukwuani A. N., Abubakar M. G., Hassan S. W., Agaie B. M.Int. J. Pharm. Sci. Drug Res. 2012; 4:245–249.
(22). Ali Khairullah Z., Hazilawati H., Hutheyfa S., Mohd Rosly S., Sithambaram S., Hemn Hasan O.Asian J. Pharm. Clin. Res. 2015; 8:400–408.
(23). Anisuzzaman A. S. M., Sugimoto N., Sadik G., Gafur M. A. Pak. J.Biol. Sci. 2001; 4:1012–1015.
(24). Kazmi I., Afzal M., Rahman M., Gupta G., Anwar F. Asian Pac. J.Trop. Dis. 2012; 2:S841–S845.
(25). Carro-Juárez M., Franco M. Á., Rodriguez-Peña Mde. L. J.Evid. Based Complement. Altern. Med. 2014; 19:43–50.
(26). Wil N. N. A. N., Omar N. M., Ibrahim N. A., Tajuddin S. N. J.Chem. Pharm. Res. 2014; 6:688–693.
(27). Ghan S. Y., Chin J. H., Thoo Y. Y., Yim H. S., Ho C. W.Int. J. Pharm. Sci. Res. 2016; 7:1456–1461.
crossref
(28). Veeresh Kumar P., Gupta V. R. M. J.Phytopharmacol. 2017; 6:178–182.
(29). OECD/OCDE, OECD Guidelines for the testing of chemicals 407. 2008.
(30). Erhirhie E. O., Ekene N. E., Ajaghaku D. L. J.Nat. Sci. Res. 2014; 4:100–106.
(31). Ali R., Ali R., Jaimini A., Nishad D. K., Mittal G., Chaurasia O. P., Kumar R., Bhatnagar A., Singh S. B.Indian J. Pharmacol. 2012; 44:504–508.
(32). Arsad S. S., Esa N. M., Hamzah H., Othman F. J.Med. Plant Res. 2013; 7:3030–3040.
(33). Aniagu S. O., Nwinyi F. C., Akumka D. D., Ajoku G. A., Dzarma S., Izebe K. S., Ditse M., Nwaneri P. E. C., Wambebe C., Gamaniel K. Afr. J.Biotechnol. 2005; 4:72–78.
(34). Ilgın S., Aydoğan-Kılıç G., Baysal M., Kılıç V, Ardıç M., Uçarcan Ş., Atlı Ö.Oxid. Med. Cell. Longev. 2018; 2018:7196142.
(35). Sönmez M., Türk G., Yüce A.Theriogenology. 2005; 63:2063–2072.
(36). El-Kashoury A. A., Salama A. F., Selim A. I., Mohamed R. A.Life Sci. J. 2010; 7:5–19.
(37). Akunna G. G., Saalu L. C., Ogunlade B., Ojewale A. O., Enye L. A. Am. J.Res. Commun. 2013; 1:123–142.
(38). Sakr S. A., Zowail M. E., Marzouk A. M.Anat. Cell. Biol. 2014; 47:171–179.
(39). Takeda N., Yoshinaga K., Furushima K., Takamune K., Li Z., Abe S. I., Aizawa S., Yamamura K.Sci. Rep. 2016; 6:27409.
(40). Lucio R. A., Tlachi-López J. L., Eguibar J. R., Ågmo A.Physiol. Behav. 2013; 110:73–79.
(41). Neergheen-Bhujun V. S.Biomed. Res. Int. 2013; 2013:804086.
(42). Pingale S. S., Ganpat M. A., Gawali S. Int. Res. J.Pharm. 2011; 2:263–266.
(43). Ellacott K. L., Morton G. J., Woods S. C., Tso P., Schwartz M. W.Cell. Metab. 2010; 12:10–17.
(44). Sattayasai J., Bantadkit J., Aromdee C., Lattmann E., Airarat W. J.Ayurveda Integr. Med. 2012; 3:175–179.
(45). Sanyal S., Maity P., Pradhan A., Bepari M., Dey S. K., Roy T., Choudhury S. T.Toxicol. Forensic Med. 2016; 1:54–64.
(46). Sharif H. B., Mukhtar M. D., Mustapha Y., Baba G., Lawal A. O.Adv. Pharm. 2015; 2015:1–9.
(47). Shahraki M. R., Shahraki S., Arab M. R., Shahrakipour M.Zahedan J. Res. Med. Sci. 2015; 17:42–46.
(48). Chen D., Bi D., Song Y. L., Tu P. F. Chin. J.Nat. Med. 2012; 10:287–291.
(49). Yang L., Qiao L., Xie D., Yuan Y., Chen N., Dai J., Guo S.Phytochemistry. 2012; 76:92–97.
(50). Peng K., Mei W. L., Zhao Y. X., Tan L. H., Wang Q. H., Dai H. F. J.Asian Nat. Prod. Res. 2011; 13:951–955.
(51). Chen H. Q., Wei J. H., Yang J. S., Zhang Z., Yang Y., Gao Z. H., Sui C., Gong B.Chem. Biodivers. 2012; 9:236–250.
(52). Khalil A. S., Rahim A. A., Taha K. K., Abdallah K. B.J Appl. Indus. Sci. 2013; 1:78–88.
(53). Sheweita S. A., Tilmisany A. M., Al-Sawaf H.Curr. Drug Metab. 2005; 6:495–501.
(54). Thakur M., Chauhan N. S., Bhargava S., Dixit V. K.Arch. Sex. Behav. 2009; 38:1009–1015.
(55). Cheah Y., Yang W.Adv. Biosci. Biotechnol. 2011; 2:182–197.
(56). Adenubi O. T., Raji Y., Awe E. O., Makinde J. M.Sci. World J. 2010; 5:1–6.
(57). Yousef M. I., Salama A. F.Food Chem. Toxicol. 2009; 47:1168–1175.
(59). Agarwal A., Sekhon L. H.Hum. Fertil. 2010; 13:217–225.

Fig. 1.
Sperm morphology of ICR male mice, as indicated by eosin staining and observed using inverted microscope (40×magnification),(A) Normal sperm, (B) No hook, (C) Pin head, (D) Bent head, (E) Coiled flagellum, (F) Hairpin loop, (G) Bent flagellum.
nps-25-157f1.tif
Table 1.
The different doses of aqueous extract for experimental groups
Group Treatment
Control Mice received 10 ml/kg body weight of normal saline (n = 5)
AEAM 50 Mice received 50 mg/kg body weight /day crude extract (n = 5)
AEAM 100 Mice received 100 mg/kg body weight /day crude extract (n = 5)
AEAM 150 Mice received 150 mg/kg body weight / day crude extract (n = 5)
AEAM 200 Mice received 200 mg/kg body weight / day crude extract (n = 5)
AEAM 500 Mice received 500 mg/kg body weight / day crude extract (n = 5)
AEAM 1000 Mice received 1000 mg/kg body weight / day crude extract (n = 5)
Table 2.
Changes in body weight and mortality rate (%) of single dose (2000 mg/kg) of A. malaccensis leaves extract on the body weight of mice for 14 days
Treatment Groups Body weight in grams (mean ± SEM) Mortality rate (%)
Day 0 Day 7 Day 14
Control 35.58 ± 0.50 35.95 ± 1.09 34.03 ± 1.45 0
AEAM 2000 40.21 ± 1.39 38.11 ± 2.05 38.79 ± 1.36 0

The mean difference is significant at p < 0.05 level n = 5 in each group

Table 3.
Effects of single dose of 2000 mg/kg of A. malaccensis leaves extract on relative organ weights
Treatment Groups Relative organ weights in grams (mean ± SEM)
Testis Epididymis Kidney Liver
Control 0.65 ± 0.07 0.35 ± 0.03 1.42 ± 0.07 4.42 ± 0.16
AEAM 2000 0.53 ± 0.04 0.34 ± 0.02 1.33 ± 0.04 4.85 ± 0.32

The mean difference is significant at p < 0.05 level n = 5 in each group

Table 4.
Effects of single dose of 2000 mg/kg of A. malaccensis leaves extract on sperm parameters of mice given 14 days’ treatment
Treatment Groups Sperm parameters (mean ± SEM)
Sperm abnormality (%) Sperm count (106/ml) Sperm motility (%)
Control 43.57 ± 0.73 0.97 ± 0.17 49.02 ± 1.86
AEAM 2000 44.02 ± 0.59 1.15 ± 0.08 58.38 ± 1.90

The mean difference is significant at p < 0.05 level n = 5 in each group

Table 5.
Changes in body weight and mortality rate (%) of mice following treatment with different doses of A. malaccensis aqueous leaf extract
Treatment Groups Body weight (g) (mean ± SEM) Mortality rate (%)
Day 0 Day 7 Day 14 Day 21
Control 33.74 ± 0.53 32.64 ± 0.31 32.85 ± 0.37 33.47 ± 0.64 0
AEAM 50 34.34 ± 0.21 32.37 ± 0.63 31.77 ± 0.71 32.42 ± 0.78 0
AEAM 100 35.40 ± 0.59 34.11 ± 1.09 34.16 ± 1.24 34.96 ± 0.99 0
AEAM 150 38.18 ± 0.62 34.18 ± 1.53 35.02 ± 1.46 35.17 ± 1.65 0
AEAM 200 34.61 ± 0.64 33.62 ± 0.60 31.67 ± 0.21 31.79 ± 0.34 0
AEAM 500 39.28 ± 0.96 37.40 ± 1.17 35.45 ± 0.68 35.66 ± 0.82 0
AEAM 1000 37.09 ± 0.40 33.16 ± 1.39 33.15 ± 1.13 32.71 ± 0.89 20

The mean difference is significant at p < 0.05 level n = 5 in each group

Table 6.
Effects of repeated doses of A. malacensis leaves extract on the relative organ weights of mice given 21 days’ treatment.
Treatment Groups Relative organ weights in grams (mean ± SEM)
Testis Epididymis Kidney Liver
Control 0.69 ± 0.05 0.42 ± 0.02 1.35 ± 0.08 4.21 ± 0.26
AEAM 50 0.65 ± 0.04 0.40 ± 0.01 1.31 ± 0.06 4.64 ± 0.19
AEAM 100 0.63 ± 0.02 0.45 ± 0.03 1.36 ± 0.03 4.32 ± 0.24
AEAM 150 0.62 ± 0.04 0.37 ± 0.04 1.23 ± 0.06 4.41 ± 0.36
AEAM 200 0.68 ± 0.04 0.39 ± 0.02 1.37 ± 0.07 4.32 ± 0.20
AEAM 500 0.63 ± 0.02 0.35 ± 0.05 1.29 ± 0.09 4.91 ± 0.25
AEAM 1000 0.67 ± 0.02 0.36 ± 0.03 1.23 ± 0.09 4.42 ± 0.22

The mean difference is significant at p < 0.05 level n = 5 in each group

Table 7.
Effects of repeated doses of A. malacensis leaves extract on sperm parameters of mice given 21 days’ treatment
Treatment Groups Sperm parameters (mean ± SEM)
Sperm abnormality (%) Sperm count (106/ml) Sperm motility (%)
Control 41.91 ± 1.34 1.08 ± 0.17 49.23±1.41
AEAM 50 40.33 ± 1.24 0.91 ± 0.22 50.55 ± 1.67
AEAM 100 15.70 ± 1.33 1.36 ± 0.28 64.92 ± 1.57
AEAM 150 26.52 ± 0.89 1.41 ± 0.12 63.57 ± 1.10
AEAM 200 27.91 ± 0.90 0.94 ± 0.13 57.69 ± 0.78
AEAM 500 30.97 ± 0.76 0.86 ± 0.13 50.80 ± 0.85
AEAM 1000 34.66 ± 0.81 1.06 ± 0.18 56.11 ± 1.71

The mean difference is significant at p < 0.05 level n = 5 in each group

TOOLS
Similar articles