Journal List > Prog Med Phys > v.29(4) > 1126761

Kim, Chung, Kang, Eom, Song, Kim, Kim, and Lee: Dosimetric and Radiobiological Evaluation of Dose Volume Optimizer (DVO) and Progressive Resolution Optimizer (PRO) Algorithm against Photon Optimizer on IMRT and VMAT Plan for Prostate Cancer

Abstract

This study aimed to compare the performance of previous optimization algorithms against new a photon optimizer (PO) algorithm for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans for prostate cancer. Eighteen patients with prostate cancer were retrospectively selected and planned to receive 78 Gy in 39 fractions of the planning target volume (PTV). All plans for each patient optimized with the dose volume optimizer (DVO) and progressive resolution optimizer (PRO) algorithms for IMRT and VMAT were compared against plans optimized with the PO within Eclipse version 13.7. No interactive action was performed during optimization. Dosimetric and radiobiological indices for the PTV and organs at risk were analyzed. The monitor units (MU) per plan were recorded. Based on the plan quality for the target coverage, prostate IMRT and VMAT plans using the PO showed an improvement over DVO and PRO. In addition, the PO generally showed improvement in the tumor control probability for the PTV and normal tissue control probability for the rectum. From a technical perspective, the PO generated IMRT treatment plans with fewer MUs than DVO, whereas it produced slightly more MUs in the VMAT plan, compared with PRO. The PO showed over potentiality of DVO and PRO whenever available, although it led to more MUs in VMAT than PRO. Therefore, the PO has become the preferred choice for planning prostate IMRT and VMAT at our institution.

REFERENCES

1.Cho B. Intensity-modulated radiation therapy: a review with a physics perspective. Radiat Oncol J. 2018. 36(1):1–10.
crossref
2.Censor Y., Palta JR., Mackie TR. Mathematical optimization for the inverse problem of intensity modulated radiation therapy the state of the art. Madison: AAPM Med Phys Publishing;2003. p. 25–49.
3.Cassioli A., Unkelbach J. Aperture shape optimization for IMRT treatment planning. Phys Med Biol. 2013. 58:301–318.
crossref
4.Choi KH., Kim J., Lee SW., Kang Y., Jang HS. Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience. Radiat Oncol J. 2018. 36(1):63–70.
crossref
5.Liu H., Sintay B., Pearman K., Shang Q., Hayes L., Maurer J., Vanderstraeten C., Wiant D. Comparison of the progressive resolution optimizer and photon optimizer in VMAT optimization for stereotactic treatments. J App Clin Med Phys. 2018. 19(4):155–162.
crossref
6.Shende R., Gupta G., Patel G., Kumar S. Assessment and performance evaluation of photon optimizer vs. dose volume optimizer for IMRT and progressive resolution optimizer for RapidArc planning using a virtual phantom. Int J Cancer Ther Oncol. 2016. 4(3):437–448.
7.Cozzi L., Dinshaw KA., Shrivastava SK., Mahantshetty U., Engineer R., Deshpande DD., Jamema SV., Vanetti E., Clivio A., Nicolini G., Fogliata A. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol. 2008. 89(2):180–191.
crossref
8.Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 2008. 35:310–7.
crossref
9.Vanetti E., Nicolini G., Nord J., Peltola J., Clivio A., Fogliata A., Cozzi L. On the role of the optimization of RapidArc volumetric modulated arc therapy on plan quality and efficiency. Med Phys. 2011. 38:5844–5856.
10.Klippel N., Schmucking M., Terribilini D., Geretschlager A., Aebersold DM., Manser P. Impoved VMAT planning for head and neck tumors with an advanced optimization algorithm. Z Med Phys. 2015. 25:333–340.
11.Kim JS., Chung JB., Kim IA., Eom KY. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer. J Korean Phys Soc. 2013. 63(8):1637–1643.
crossref
12.ICRU, Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): Contents. J ICRU. 2010. 10:NP.
13.Shaw E., Kline R., Gillin M., Souhami L., Hirschfeld A., Dinapoli R., Martin L. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol, Biol, Phys. 1993. 27:1231–1239.
crossref
14.Gay HA., Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med. 2007. 23:115–25.
crossref
15.Kang SW., Suh TS., Chung JB., Eom KY., Song C., Kim IA., Kim JS., Lee JW., Cho W. Comparison of dosimetric and radiobiological parameters on plans for prostate stereotactic body radiotherapy using an endorectal balloon for different dose-calculation algorithms and delivery-beam modes. J Korean Phys Soc. 2017. 70(4):424–30.
crossref
16.Kang SW., Chung JB., Kim JS., Kim IA., Eom KY., Song C., Lee JW., Kim JY., Suh TS. Optimal planning strategy among various arc arrangements for prostate stereotactic body radiotherapy with volumetric modulated arc therapy technique. Radiol Oncol. 2017. 51(1):112–120.
crossref
17.Fogliata A., Wang PM., Belosi F., Clivio A., Nicolini G., Vanetti E., Cozzi L. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol. 2014. 9:236.
crossref
18.Fogliata A., Nicolini G., Clivio A., Vanetti E., Laksar S., Tozzi A., Scorsetti M., Cozzi L. A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers. Radiat Oncol. 2015. 10:220.
crossref

Fig. 1
Comparison of DVH of (a) PO versus DVO for IMRT plan and (b) PO versus PRO for VMAT plan. Solid lines correspond to PO while the dashed lines correspond to DVO and PRO used in the optimization.
pmp-29-106f1.tif
Table 1.
Dose volume constraints used in this study for both volumetric modulated arc therapy and intensity modulated radiation therapy.
Structure Function type Physical dose (Gy)
Rectum V30% <70
V50% <54.3
Bladder V30% <70
V50% <54.3
Femoral heads V5% <54.3
GTV V99% >78
PTV V0% <81.9
V2% <81
V97% >76.5
V99% >74.1
Ring Dmax <60

Dmax, the maximum dose; Vxx%, the volume receiving dose of xx Gy (x% of the prescription dose).

Table 2.
Parameters used to calculate Niemierko's EUD-based TCP and NTCP.
Tissue Volume Type a γ50 TCD50/ TD50 α/β
Prostate Tumor −13 2.2 67.5 1.5
Rectum Normal 8.33 2.66 80 5.4
Bladder   2 3.63 80 7.5
Right FH   13 2.7 65 3
Left FH   13 2.7 65 3

FH, femoral head; α/β, Alpha-beta ratio.

Table 3.
Comparison of dosimetric index for PTV and OARs in IMRT plans optimized with DVO and PO, and VMAT plans optimized with PRO and PO.
Organ Dosimetric Index IMRT VMAT
DVO PO PRO PO
PTV Dmean (%) 100.90 101.39 101.30 101.69
D2% (%) 103.91 103.50 104.93 104.48
D95% (%) 95.79 98.30 96.16 97.33
V95% (%) 95.89 98.56 96.60 97.95
HI 0.05 0.08 0.09 0.07
CI 1.33 1.03 1.03 1.06
CN 0.73 0.90 0.91 0.90
Bladder Dmean (%) 33.18 33.10 28.95 30.43
V40% (%) 36.28 38.00 31.13 32.55
V70% (%) 22.32 19.89 16.89 17.62
Rectum Dmean (%) 57.50 51.76 50.27 47.56
V10% (%) 88.41 89.40 88.15 86.60
V40% (%) 78.21 74.52 71.09 65.13
V60% (%) 51.82 34.66 32.79 29.90
V70% (%) 34.53 23.34 22.40 19.85
Right FH Dmean (%) 31.83 28.33 27.97 27.25
Dmax (%) 56.90 57.08 48.68 47.11
Left FH Dmean (%) 30.20 28.18 27.44 25.74
Dmax (%) 57.66 56.67 48.26 46.44

Dmean, the mean dose; Dmax, the maximum dose; Dmin, the minimum dose; D95%, the dose received at least 95% volume; VXX%, the volume received xx% of prescription dose; HI, homogeneity index; CI, conformity index; CN, conformal number.

Table 4.
Average and standard deviation of TCP and NTCP from DVHs of 20 patient plans using different optimization algorithms for IMRT and VMAT technique.
Radiobiological Index Organ IMRT VMAT
DVO Average (SD) PO Average (SD) PRO Average (SD) PO Average (SD)
TCP (%) PTV 84.49 (3.53) 86.00 (4.94) 84.31 (2.43) 86.27 (2.11)
NTCP (%) Bladder 0.064 (0.150) 0.060 (0.184) 0.051 (0.181) 0.053 (0.176)
Rectum 6.693 (3.297) 4.384 (2.325) 4.586 (2.219) 3.659 (2.199)
Left FH 0.548 (1.418) 0.126 (0.337) 0.041 (0.119) 0.035 (0.103)
Right FH 0.618 (1.835) 0.168 (0.514) 0.030 (0.080) 0.031 (0.088)

SD, standard deviation; FH, femoral head.

Table 5.
Average and standard deviation of total MUs and optimization time for different delivery techniques and optimization algorithms
Technical parameter IMRT VMAT
DVO Average (SD) PO Average (SD) PRO Average (SD) PO Average (SD)
MUs 604 (32) 555 (25) 439 (19) 452 (22)

SD, standard deviation; MUs, monitor units.

Table 6.
P-value of estimated parameters by statistical analysis on plans with DVO and PRO against PO for IMRT and VMAT.
Organ Index DVO vs PO PRO vs PO
PTV Dmean (%) <.01 <.01
D2% (%) <.01 <.01
D95% (%) <.01 <.01
V95% (%) <.01 <.01
HI <.01 <.01
CI <.01 <.01
CN <.01 0.03
TCP <.01 <.01
Bladder Dmean (%) 0.64 <.01
V40% (%) <.01 <.01
V70% (%) <.01 <.01
NTCP 0.03 <.01
Rectum Dmean (%) <.01 <.01
V10% (%) <.01 <.01
V40% (%) <.01 <.01
V60% (%) <.01 <.01
V70% (%) <.01 <.01
NTCP <.01 <.01
Right Femoral Head Dmean (%) <.01 0.11
Dmax (%) 0.78 0.02
NTCP 0.91 0.53
Left Femoral Head Dmean (%) <.01 <.01
Dmax (%) 0.81 <.01
NTCP 0.25 0.03
MU <.01 <.01
TOOLS
Similar articles