Journal List > Investig Magn Reson Imaging > v.23(1) > 1125199

Seo, Kwon, and Jang: Mini-Review of Studies Reporting the Repeatability and Reproducibility of Diffusion Tensor Imaging

Abstract

Purpose

Diffusion tensor imaging (DTI) data must be analyzed by an analyzer after data processing. Hence, the analyzed data of DTI might depend on the analyzer, making it a major limitation. This paper reviewed previous DTI studies reporting the repeatability and reproducibility of data from the corticospinal tract (CST), one of the most actively researched neural tracts on this topic.

Materials and Methods

Relevant studies published between January 1990 and December 2018 were identified by searching PubMed, Google Scholar, and MEDLINE electronic databases using the following keywords: DTI, diffusion tensor tractography, reliability, repeatability, reproducibility, and CST. As a result, 15 studies were selected.

Results

Measurements of the CSTs using region of interest methods on 2-dimensional DTI images generally showed excellent repeatability and reproducibility of more than 0.8 but high variability (0.29 to 1.00) between studies. In contrast, measurements of the CST using the 3-dimensional DTT method not only revealed excellent repeatability and reproducibility of more than 0.9 but also low variability (repeatability, 0.88 to 1.00; reproducibility, 0.82 to 0.99) between studies.

Conclusion

Both 2-dimensional DTI and 3-dimensional DTT methods appeared to be reliable for measuring the CST but the 3-dimensional DTT method appeared to be more reliable.

References

1. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994; 66:259–267.
crossref
2. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999; 45:265–269.
crossref
3. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000; 44:625–632.
crossref
4. Wang JY, Bakhadirov K, Devous MD Sr, et al. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol. 2008; 65:619–626.
crossref
5. Shenton ME, Hamoda HM, Schneiderman JS, et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012; 6:137–192.
crossref
6. Jang SH. Traumatic axonal injury in mild traumatic brain injury. In: Gorbunoy N, ed. Traumatic brain injury. 1st ed. London: InTech. 2018. 137–154.
7. Yu FF, Chiang FL, Stephens N, et al. Characterization of normal-appearing white matter in multiple sclerosis using quantitative susceptibility mapping in conjunction with diffusion tensor imaging. Neuroradiology. 2019; 61:71–79.
crossref
8. Lee SK, Kim DI, Kim J, et al. Diffusion-tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. Radiographics. 2005; 25:53–65. discussion 66–58.
crossref
9. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T. MR tractography: a review of its clinical applications. Magn Reson Med Sci. 2009; 8:165–174.
crossref
10. Stieltjes B, Kaufmann WE, van Zijl PC, et al. Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage. 2001; 14:723–735.
crossref
11. Bonekamp D, Nagae LM, Degaonkar M, et al. Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage. 2007; 34:733–742.
crossref
12. Wakana S, Caprihan A, Panzenboeck MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007; 36:630–644.
crossref
13. Danielian LE, Iwata NK, Thomasson DM, Floeter MK. Reliability of fiber tracking measurements in diffusion tensor imaging for longitudinal study. Neuroimage. 2010; 49:1572–1580.
crossref
14. Borich MR, Wadden KP, Boyd LA. Establishing the reproducibility of two approaches to quantify white matter tract integrity in stroke. Neuroimage. 2012; 59:2393–2400.
crossref
15. Hakulinen U, Brander A, Ryymin P, et al. Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain. BMC Med Imaging. 2012; 12:30.
crossref
16. Lee AY, Shin DG, Park JS, et al. Neural tracts injuries in patients with hypoxic ischemic brain injury: diffusion tensor imaging study. Neurosci Lett. 2012; 528:16–21.
crossref
17. Jang SH, Chang CH, Lee J, Kim CS, Seo JP, Yeo SS. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke. 2013; 44:1099–1104.
crossref
18. Kristo G, Leemans A, de Gelder B, Raemaekers M, Rutten GJ, Ramsey N. Reliability of the corticospinal tract and arcuate fasciculus reconstructed with DTI-based tractography: implications for clinical practice. Eur Radiol. 2013; 23:28–36.
crossref
19. Kwon HG, Son SM, Jang SH. Development of the transcallosal motor fiber from the corticospinal tract in the human brain: diffusion tensor imaging study. Front Hum Neurosci. 2014; 8:153.
crossref
20. Paldino MJ, Hedges K, Rodrigues KM, Barboriak DP. Repeatability of quantitative metrics derived from MR diffusion tractography in paediatric patients with epilepsy. Br J Radiol. 2014; 87:20140095.
crossref
21. Rijken BF, Leemans A, Lucas Y, van Montfort K, Mathijssen IM, Lequin MH. Diffusion tensor imaging and fiber tractography in children with craniosynostosis syndromes. AJNR Am J Neuroradiol. 2015; 36:1558–1564.
crossref
22. Acheson A, Wijtenburg SA, Rowland LM, et al. Reproducibility of tract-based white matter microstructural measures using the ENIGMA-DTI protocol. Brain Behav. 2017; 7:e00615.
crossref
23. Ius T, Turella L, Pauletto G, et al. Quantitative diffusion tensor imaging analysis of low-grade gliomas: from preclinical application to patient care. World Neurosurg. 2017; 97:333–343.
crossref
24. Rosenstock T, Giampiccolo D, Schneider H, et al. Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract. Neuroimage Clin. 2017; 16:276–285.
crossref
25. Kunimatsu A, Aoki S, Masutani Y, et al. The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci. 2004; 3:11–17.
crossref
26. Seo JP, Chang PH, Jang SH. Anatomical location of the corticospinal tract according to somatotopies in the centrum semiovale. Neurosci Lett. 2012; 523:111–114.
crossref
27. Kwon HG, Yang JH, Park JB, Kim MH, Choi SH, Yang DS. Anatomical location and somatotopic organization of the corticospinal tract in the corona radiata of the normal human brain: a diffusion tensor tractography study. Neuroreport. 2014; 25:710–714.
28. Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous MD Sr. A comprehensive reliability assessment of quantitative diffusion tensor tractography. Neuroimage. 2012; 60:1127–1138.
crossref

Fig. 1.
Measurement of parameters using the region of interest on diffusion tensor imaging (a) and using the reconstructed corticospinal tract on diffusion tensor tractography (b).
imri-23-26f1.tif
Fig. 2.
(a) First and second regions of interest (ROIs: roundly drawn area) are applied to the corticospinal areas in the upper pons and mid-pons, respectively. (b) The reconstructed corticospinal tracts that are commonly passed through the first and second ROIS.
imri-23-26f2.tif
Fig. 3.
Flow diagram of the approach used to select the studies to be reviewed.
imri-23-26f3.tif
Table 1.
Repeatability and Reproducibility of Diffusion Tensor Imaging and Diffusion Tensor Tractography of the Corticospinal Tract
  Authors Publication year Subjects no. Statistical analysis Repeatability Reproducibility Region of interest
DTI Bonekamp et al. (11) 2007 40 healthy children ICC Intra-raters Inter-raters 1. Cerebral peduncle
          1. CP 1. CP 2. Posterior limb of internal
          FA – ICC: 0.96 FA – ICC: 0.90 capsule
          ADC – ICC: 0.98 ADC – ICC: 0.92 3. Superior corona radiata
          2. PLIC 2. PLIC  
          FA – ICC: 0.97 FA – ICC: 0.91  
          ADC – ICC: 0.99 ADC – ICC: 0.98  
          3. SCR 3. SCR  
          FA – ICC: 0.99 FA – ICC: 0.97  
          ADC – ICC: 1.00 ADC – ICC: 0.99  
            Inter-scans  
            1. CP  
            FA – ICC: 0.81  
            ADC – ICC: 0.86  
            2. PLIC  
            FA – ICC: 0.66  
            ADC – ICC: 0.82  
            3. SCR  
            FA – ICC: 0.79  
            ADC – ICC: 0.93  
  Borich et al. (14) 2012 10 chronic stroke patients
10 healthy adults
ICC Intra-raters
FA – ICC: 0.94
Inter-raters
FA – ICC: 0.71
Posterior limb of internal capsule
  Hakulinen et al. (15) 2012 30 healthy adults ICC Circular ROI
1. Pons
  1. Pons
          FA – ICC: 0.74   2. Cerebral peduncle
          ADC – ICC: 0.83   3. Posterior limb of internal
          2. CP   capsule
          FA – ICC: 0.74   4. Corona radiate
          ADC – ICC: 0.19   5. Centrum semiovale
          3. PLIC    
          FA – ICC: 0.90    
          ADC – ICC: 0.76    
          4. CR    
          FA – ICC: 0.84    
          ADC – ICC: 0.76    
          Freehand ROI    
          1. Pons    
          FA – ICC: 0.63    
          ADC – ICC: 0.70    
          2. CP    
          FA – ICC: 0.74    
          ADC – ICC: 0.29    
          3. PLIC    
          FA – ICC: 0.66    
          ADC – ICC: 0.78    
          4. CR    
          FA – ICC: 0.86    
          ADC – ICC: 0.86    
  Acheson et al. (22) 2017 12 healthy adults
89 children and adolescents
ICC   Inter-raters
1. IC
FA – ICC: 0.72
1. Posterior limb of interna
capsule
2. Corona radiate
            2. CR  
            FA – ICC: 0.87  
DTT Stieltjes et 2001 6 healthy adults Kappa FA threshold FA threshold  
  al. (10)            
          0.25 – k: 1.00 0.25 – k: 0.92  
          0.35 – k: 1.00 0.35 – k: 0.97  
  Wakana et 2007 10 healthy adults Kappa AND – k: 0.94 AND – k: 0.80  
  al. (12)       CUT – k: 0.95 CUT – k: 0.80  
  Danielian et 2010 10 healthy adults ICC Intra-raters Inter-raters  
  al. (13)       FA – ICC: 0.99 FA – ICC: 0.99  
          MD – ICC: 0.99 MD – ICC: 0.99  
          TV – ICC: 0.93 TV – ICC: 0.86  
            Inter-scans  
            FA – ICC: 0.95  
            MD – ICC: 0.83  
            TV – ICC: 0.82  
  Lee et al. (16) 2012 12 patients with HI-BI ICC Intra-raters Inter-scans  
      12 healthy adults        
          FA, ADC, and TV – ICC: FA, ADC, and TV  
          0.92 – 0.99 ICC: 0.85 – 0.99  
  Kristo et al. 2013 17 healthy subjects Coefficients   Inter-scans  
  (18)     of variation   FA – CV: 2.08%  
        (CV)   MD – CV: 2.32%  
            TV – CV: 12.62%  
  Jang et al. 2013 54 stroke patient ICC Intra-raters Inter-raters  
  (17)            
          FA, ADC, and TV – ICC: FA, ADC, and TV -  
          0.88 – 0.99 ICC: 0.87 – 0.99  
  Kwon et al. 2014 76 healthy subjects chi-squared   Turning angles  
  (19)     test   45°: 98.7%  
            60°: 98.7%  
            75°: 98.0%  
  Paldino et al. 2014 30 pediatric patients ICC   Inter-raters  
  (20)         FA – ICC: 0.99  
            MD – ICC: 0.97  
  Rijken et al. 2015 7 healthy subjects ICC Intra-raters Inter-raters  
  (21)   58 patients with F FA, ADC, and TV – ICC: FA, ADC, and TV –:  
      craniosynostosis   0.93 ICC: 0.94  
      syndromes        
  Ius et al. (23) 2017 37 patients with ICC   Inter-raters  
      low-grade glioma     TV – ICC: 0.99  
  Rosenstock 2017 30 patients with ICC   Distance between  
  et al. (24)   high grade glioma     tumor and CST  
            – ICC: 0.99  
            FA – ICC: 0.94  
            ADC – ICC: 0.96  
            TV – ICC: 0.90  

ADC = apparent diffusion coefficient; DTI = diffusion tensor imaging; DTT = diffusion tensor tractography; FA = fractional anisotropy; ICC = intraclass correlation coefficient; MD = mean diffusivity; TV = tract volume

TOOLS
Similar articles