Journal List > J Rheum Dis > v.26(2) > 1122076

Song and Lee: Causal Association between Bone Mineral Density and Osteoarthritis: A Mendelian Randomization Study

Abstract

Objective

To examine whether bone mineral density (BMD) is causally associated with osteoarthritis (OA).

Methods

We performed a two-sample Mendelian randomization (MR) analysis using the inverse-variance weighting (IVW), weighted median, and MR-Egger regression methods. We used publicly available summary statistics datasets of a genomewide association study (GWAS) on femur neck (FN) BMD of individuals of European ancestry as the exposure and a GWAS for non-cancer illness code self-reported: OA from the individuals included in the UK Biobank as the outcome.

Results

We selected 21 independent single-nucleotide polymorphisms with genomewide significance (p<5.00E-08) from GWAS on FN BMD as the instrumental variables. The IVW method (beta=0.010, standard error [SE]=0.003, p=0.002) and the weighted median approach (beta=0.011, SE=0.004, p=0.006) yielded evidence of a causal association between FN BMD and OA. However, the MR-Egger analysis showed no causal association between FN BMD and OA (beta=0.005, SE=0.017, p=0.753). Since MR-Egger regression suffers from a lack of power and a susceptibility to weak instrument bias, the MR analysis results may support a causal association between FN BMD and OA.

Conclusion

The results of MR analysis by IVW and weighted median, but not MR-Egger regression indicate that FN BMD is likely to be causally associated with an increased risk of OA incidence The current findings may provide an opportunity to elucidate the underlying mechanisms of the effects of BMD on the OA incidence.

REFERENCES

1. Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005; 365:965–73.
crossref
2. Litwic A, Edwards MH, Dennison EM, Cooper C. Epidemiology and burden of osteoarthritis. Br Med Bull. 2013; 105:185–99.
crossref
3. Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2015; 23:507–15.
crossref
4. Park EH, Kim JS, Lee JS, Lee YJ, Song YW, Lee EY. Compound K inhibits interleukin-1β-induced expression of inflammatory mediators and matrix metalloproteinases by inhibiting mitogen-activated protein kinase activation in chondrocytes. J Rheum Dis. 2018; 25:188–96.
crossref
5. Hart DJ, Cronin C, Daniels M, Worthy T, Doyle DV, Spector TD. The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford study. Arthritis Rheum. 2002; 46:92–9.
crossref
6. Nevitt MC, Zhang Y, Javaid MK, Neogi T, Curtis JR, Niu J, et al. High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis. 2010; 69:163–8.
crossref
7. Ranstam J. Bias in observational studies. Acta Radiol. 2008; 49:644–5.
crossref
8. Burgess S, Daniel RM, Butterworth AS, Thompson SG. EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol. 2014; 44:484–95.
crossref
9. Lawlor DA. Commentary: two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol. 2016; 45:908–15.
crossref
10. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello‐ Diez A, Leo PJ, et al. Whole‐ genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015; 526:112–7.
11. Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, et al. Genomewide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet. 2018; 50:549–58.
crossref
12. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet epidemiol. 2013; 37:658–65.
crossref
13. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013; 178:1177–84.
crossref
14. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian randomization: avoiding the down-sides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016; 45:1717–26.
crossref
15. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015; 44:512–25.
crossref
16. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017; 32:377–89.
crossref
17. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016; 40:304–14.
crossref
18. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife. 2018; 7. pii: e34408.
crossref
19. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997; 315:1533–7.
crossref
20. Bowden J, Del Greco M F, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016; 45:1961–74.
21. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21:1539–58.
crossref
22. Nevitt MC, Lane NE, Scott JC, Hochberg MC, Pressman AR, Genant HK, et al. Radiographic osteoarthritis of the hip and bone mineral density. The study of osteoporotic fractures research group. Arthritis Rheum. 1995; 38:907–16.
23. Smith GD, Ebrahim S. Mendelian randomization: genetic variants as instruments for strengthening causal inference in observational studies. Weinstein M, Vaupel JW, Wachter KW, editors. National Research Council (U.S.). Committee on Advances in Collecting and Utilizing Biological Indicators and Genetic Information in Social Science Surveys. National Research Council (U.S.). Committee on Population, 2006-2007. Biosocial surveys.Washington, D.C.: National Academies Press;2008.
24. Thompson JR, Minelli C, Bowden J, Del Greco FM, Gill D, Jones EM, et al. Mendelian randomization incorporating uncertainty about pleiotropy. Stat Med. 2017; 36:4627–45.
crossref
25. Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004; 33:30–42.
crossref
26. Lo GH, Niu J, McLennan CE, Kiel DP, McLean RR, Guermazi A, et al. Meniscal damage associated with increased local subchondral bone mineral density: a Framingham study. Osteoarthritis Cartilage. 2008; 16:261–7.
crossref

Figure 1.
Forest plot of the causal effects of BMD-associated SNPs on OA. BMD: bone mineral density, SNP: single nucleotide polymorphism, OA: osteoarthritis, IVW: inverse-variance weighting, MR: Mendelian randomization.
jrd-26-104f1.tif
Figure 2.
Scatter plots of genetic associations with BMD against the genetic associations with OA. The slopes of each line represent the causal association for each method. The blue line represents the inverse-variance weighting estimate, the green line represents the weighted median estimate, and the dark blue line represents the Mendelian randomization‐ Egger estimate. BMD: bone mineral density, OA: osteoarthritis, SNP: single nucleotide polymorphism.
jrd-26-104f2.tif
Figure 3.
“Leave-one-out” analysis to investigate the possibility that the causal association was driven by a unique SNP. SNP: single nucleotide polymorphism, MR: Mendelian randomization.
jrd-26-104f3.tif
Table 1.
Instrumental SNPs associated with femur neck BMD and OA GWASs
Instrumental SNP Gene Chromosome loci Effect allele Exposure (FN BMD) Outcome (OA)
Beta SE p-value Beta SE p-value
rs10170839 CSRNP3 2 C −0.059 0.008 1.20E-14 −0.001 0.001 0.032
rs10794639 AXIN1 16 G −0.051 0.008 3.30E-11 0.001 0.001 0.451
rs10946458 CDKAL1 6 C −0.045 0.008 3.63E-08 −0.001 0.001 0.390
rs11024028 C11ORF58 11 G 0.056 0.010 2.18E-08 0.001 0.001 0.303
rs11652763 HDAC5 17 A 0.084 0.013 1.09E-10 0.002 0.001 0.095
rs13194508 RSPO3 6 C −0.052 0.009 1.30E-08 0.001 0.001 0.193
rs1366594 MEF2C 5 C −0.079 0.008 5.44E-25 −0.001 0.001 0.230
rs1485307 COLEC10 8 T 0.062 0.008 2.49E-15 0.001 0.001 0.263
rs1785493 LRP5 11 T −0.045 0.008 4.06E-08 0.000 0.001 0.545
rs2566752 GNG12-AS1 1 C 0.062 0.008 3.65E-15 0.001 0.001 0.067
rs2741856 WHSC1L2P 17 C 0.088 0.014 1.34E-09 0.001 0.001 0.432
rs3779381 WNT16 7 G 0.058 0.009 2.87E-11 0.001 0.001 0.183
rs4281029 STARD3NL 7 A 0.057 0.009 2.96E-09 0.002 0.001 0.043
rs436448 CTNNB1 3 T −0.064 0.008 1.56E-16 −0.001 0.001 0.268
rs4448201 C7orf76 7 G −0.066 0.008 4.37E-16 −0.001 0.001 0.352
rs4759320 HOXC4 12 C −0.045 0.008 3.33E-08 −0.001 0.001 0.382
rs7108738 SOX6 11 G 0.083 0.010 8.07E-17 0.000 0.001 0.973
rs71390846 FOXL1 16 C −0.059 0.010 3.16E-09 0.000 0.001 0.958
rs7209460 SMG6 17 C −0.051 0.008 1.35E-09 −0.002 0.001 0.001
rs7524102 ZBTB40 1 G 0.084 0.010 7.36E-17 0.000 0.001 0.604
rs9478217 CCDC170 6 A −0.053 0.008 1.23E-11 0.001 0.001 0.131

SNP: single nucleotide polymorphism, BMD: bone mineral density, OA: osteoarthritis, GWAS: genomewide association study, FN: femur neck, Beta: beta coefficient, SE: standard error, CSRNP3: cysteine and serine rich nuclear protein 3, AXIN1: axin 1, CDKAL1: CDK5 regulatory subunit associated protein 1 like 1, C11ORF58: chromosome 11 open reading frame 58, HDAC5: histone deacetylase 5, RSPO3: R-spondin 3, MEF2C: myocyte enhancer factor 2C, COLEC10: collectin subfamily member 10, LRP5: LDL receptor related protein 5, GNG12-AS1: GNG12 antisense RNA 1, WHSC1L2P: Wolf-Hirschhorn syndrome candidate 1-like 2, pseudogene, WNT16: Wnt family member 16, STARD3NL: STARD3 N-terminal like, CTNNB1: catenin beta 1, C7orf76: chromosome 7 open reading frame 76, HOXC4: homeobox C4, SOX6: SRY-box 6, FOXL1: forkhead box L1, SMG6: SMG6, nonsense mediated MRNA decay factor, ZBTB40: zinc finger and BTB domain containing 40, CCDC170: coiled-coil domain containing 170.

Table 2.
The MR estimates from each method of assessing the causal effect of femur neck BMD on the incidence of OA
MR method Number of SNPs Beta SE 95 % confidence interval Association p-value Cochran's Q statistic I2 Heterogeneity p-value
Inverse variance weighted 21 0.010 0.003 0.004∼0.016 0.002 27.39 0.262 0.125
MR Egger 21 0.005 0.017 −0.028∼0.038 0.753 27.28 0.304 0.098
Weighted median 21 0.011 0.004 0.003∼0.019 0.006 27.10* 0.270* 0.133*

MR: Mendelian randomization, BMD: bone mineral density, OA: osteoarthritis, SNP: single nucleotide polymorphism, Beta: beta coefficient, SE: standard error.

* Maximum likelihood method, I2=(Q-df)/Q [21].

TOOLS
Similar articles