1. Bettenworth D, Nowacki TM, Friedrich A, Becker K, Wessling J, Heidemann J. Crohn's disease complicated by intestinal infection with methicillin-resistant
Staphylococcus aureus
. World J Gastroenterol. 2013; 19:4418–4421.
2. Lowy FD.
Staphylococcus aureus infections. N Engl J Med. 1998; 339:520–532.
3. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011; 34:637–650.
5. Noh SY, Kang SS, Yun CH, Han SH. Lipoteichoic acid from
Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Mol Immunol. 2015; 64:183–189.
6. Kim HY, Baik JE, Ahn KB, Seo HS, Yun CH, Han SH.
Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages. Mol Immunol. 2017; 82:75–83.
7. Kim HY, Kim AR, Seo HS, Baik JE, Ahn KB, Yun CH, Han SH. Lipoproteins in
Streptococcus gordonii are critical in the infection and inflammatory responses. Mol Immunol. 2018; 101:574–584.
8. Kim NJ, Ahn KB, Jeon JH, Yun CH, Finlay BB, Han SH. Lipoprotein in the cell wall of
Staphylococcus aureus is a major inducer of nitric oxide production in murine macrophages. Mol Immunol. 2015; 65:17–24.
9. Kim J, Yang J, Park OJ, Kang SS, Kim WS, Kurokawa K, Yun CH, Kim HH, Lee BL, Han SH. Lipoproteins are an important bacterial component responsible for bone destruction through the induction of osteoclast differentiation and activation. J Bone Miner Res. 2013; 28:2381–2391.
11. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001; 2:907–916.
13. Titheradge MA. Nitric oxide in septic shock. Biochim Biophys Acta. 1999; 1411:437–455.
16. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG Jr. Absorption of short-chain fatty acids by the colon. Gastroenterology. 1980; 78:1500–1507.
19. Wang F, Jin Z, Shen K, Weng T, Chen Z, Feng J, Zhang Z, Liu J, Zhang X, Chu M. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation. Am J Emerg Med. 2017; 35:402–409.
20. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009; 69:2826–2832.
21. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003; 278:11312–11319.
22. Park JS, Lee EJ, Lee JC, Kim WK, Kim HS. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-κB and ERK signaling pathways. Int Immunopharmacol. 2007; 7:70–77.
23. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008; 27:104–119.
24. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009; 461:1282–1286.
25. Hong SJ, Kim SK, Ko EB, Yun CH, Han SH. Wall teichoic acid is an essential component of
Staphylococcus aureus for the induction of human dendritic cell maturation. Mol Immunol. 2017; 81:135–142.
26. Kim HY, Kim SK, Seo HS, Jeong S, Ahn KB, Yun CH, Han SH. Th17 activation by dendritic cells stimulated with gamma-irradiated
Streptococcus pneumoniae
. Mol Immunol. 2018; 101:344–352.
27. Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, Kim DW, Lee K, Chung DK, Ju HR, et al. Differential immunostimulatory effects of gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol. 2009; 9:127–133.
28. Song IB, Gu H, Han HJ, Lee NY, Cha JY, Son YK, Kwon J. Effects of 7-MEGA™ 500 on oxidative stress, inflammation, and skin regeneration in H
2O
2-treated skin cells. Toxicol Res. 2018; 34:103–110.
29. Im J, Baik JE, Kim KW, Kang SS, Jeon JH, Park OJ, Kim HY, Kum KY, Yun CH, Han SH.
Enterococcus faecalis lipoteichoic acid suppresses
Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells. Int Immunol. 2015; 27:381–391.
30. Kim AR, Ahn KB, Kim HY, Seo HS, Kum KY, Yun CH, Han SH.
Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells. Mol Immunol. 2017; 91:218–224.
31. Alva-Murillo N, Ochoa-Zarzosa A, López-Meza JE. Short chain fatty acids (propionic and hexanoic) decrease
Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Vet Microbiol. 2012; 155:324–331.
32. Ochoa-Zarzosa A, Villarreal-Fernández E, Cano-Camacho H, López-Meza JE. Sodium butyrate inhibits
Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes. Microb Pathog. 2009; 47:1–7.
35. Foey AD. Butyrate regulation of distinct macrophage subsets: opposing effects on M1 and M2 macrophages. Int J Probiotics Prebiotics. 2011; 6:147–158.
37. Liu L, Li L, Min J, Wang J, Wu H, Zeng Y, Chen S, Chu Z. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 2012; 277:66–73.
38. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, Knuechel R, Baeuerle PA, Schölmerich J, Gross V. Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998; 115:357–369.
39. Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E, Stafford S, Periselneris J, Aldridge C, Vollmer W, et al. TLR-mediated inflammatory responses to
Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. J Immunol. 2014; 193:3736–3745.
41. Yin L, Laevsky G, Giardina C. Butyrate suppression of colonocyte NF-κB activation and cellular proteasome activity. J Biol Chem. 2001; 276:44641–44646.
42. Klampfer L, Huang J, Swaby LA, Augenlicht L. Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem. 2004; 279:30358–30368.
43. Dietrich N, Lienenklaus S, Weiss S, Gekara NO. Murine toll-like receptor 2 activation induces type I interferon responses from endolysosomal compartments. PLoS One. 2010; 5:e10250.
44. Gao B, Wang Y, Xu W, Li S, Li Q, Xiong S. Inhibition of histone deacetylase activity suppresses IFN-γ induction of tripartite motif 22 via CHIP-mediated proteasomal degradation of IRF-1. J Immunol. 2013; 191:464–471.
45. Kang SS, Ryu YH, Baik JE, Yun CH, Lee K, Chung DK, Han SH. Lipoteichoic acid from
Lactobacillus plantarum induces nitric oxide production in the presence of interferon-γ in murine macrophages. Mol Immunol. 2011; 48:2170–2177.
48. Ulloa L, Tracey KJ. The “cytokine profile”: a code for sepsis. Trends Mol Med. 2005; 11:56–63.
49. Schmaler M, Jann NJ, Ferracin F, Landolt LZ, Biswas L, Götz F, Landmann R. Lipoproteins in
Staphylococcus aureus mediate inflammation by TLR2 and iron-dependent growth
in vivo. J Immunol. 2009; 182:7110–7118.