Journal List > Nat Prod Sci > v.25(1) > 1120588

Gopalan, Hanafiah, Ring, Tan, Wahidin, Hway, and Yenn: Chemical Composition and Antimicrobial Efficiency of Swietenia macrophylla Seed Extract on Clinical Wound Pathogens

Abstract

Microbial wound infection prolonged the hospitalization and increase the cost for wound management. Silver is commonly used as antimicrobial wound dressing. However, it causes several adverse side effects. Hence, this study was aimed to evaluate the antimicrobial efficiency of Swietenia macrophylla seed extract on clinical wound pathogens. Besides, the bioactive constituents of the seed extract were also determined. S. macrophylla seeds were extracted with methanol by maceration method. The seed extract inhibited 5 test bacteria and 1 yeast on disc diffusion assay. The antibacterial activity was broad spectrum, as the extract inhibited both Gram positive and Gram negative bacteria. On kill curve analysis, the antibacterial activity of the seed extract was concentration-dependent, the increase of extract concentration resulted in more reduction of bacterial growth. The extract also caused 99.9% growth reduction of Bacillus subtilis relative to control. A total of 21 compounds were detected in gas chromatography- mass spectrometry analysis. The predominant compounds present in the extract were oleic acid (18.56%) and linoleic acid (17.72%). In conclusion, the methanolic extract of S. macrophylla seeds exhibited significant antimicrobial activity on clinical wound pathogens. Further investigations should be conducted to purify other bioactive compounds from the seeds of S. macrophylla.

REFERENCES

(1). Bowler P. G., Duerden B. I., Armstrong D. G.Clin. Microbiol. Rev. 2001; 14:244–269.
(2). Abeysinghe P. D., Weeraddana C. S. J.Pharm. Biomed. Sci. 2011; 11:1–4.
(3). Rai M. K., Deshmukh S. D., Ingle A. P., Gade A. K. J.Appl. Microbiol. 2012; 112:841–852.
(4). Panyala N. R., Pena-Mendez E. M., Havel J. J.Appl. Biomed. 2008; 6:117–129.
(5). Gillies A. C. M., Navarro C., Lowe A. J., Newton A. C., Hernández M., Wilson J., Cornelius J. P.Heredity. 1999; 83:722–732.
(6). Eid A. M. M., Elmarzugi N. A., El-Enshasy H. A.Int. J. Pharm. Pharm. Sci. 2013; 5:47–53.
(7). Paritala V., Chiruvella K. K., Thammineni C., Ghanta, R. G.;Mohammed A. Braz. J.Pharm. 2015; 25:61–83.
(8). Pamplona S., Sá P., Lopes D., Costa E., Yamada E., e Silva C., Arruda M., Souza J., da Silva M.Molecules. 2015; 20:18777–18788.
(9). Tong W. Y., Ang S. N., Darah I., Latiffah Z.World J. Pharm. Pharm. Sci. 2014; 3:121–132.
(10). Chen Q., Fung K. Y., Lau Y. T., Ng K. M, Lau D. T. W.Food Bioprod. Process. 2016; 98:236–243.
(11). Onivogui G., Letsididi R., Diaby M., Wang L, Song Y.Asian Pac. J. Trop. Biomed. 2016; 6:20–25.
(12). Siripatrawan U., Kaewklin P.Food Hydrocolloid. 2018; 84:125–134.
(13). Panghal M., Singh K., Kadyan S., Chaudary U., Yadav J. P.Burns. 2015; 41:812–819.
(14). Habermann E., Pereira V. D. C., Imatomi M., Pontes F. C., Gualtieri S. C. J. Braz. J.Bot. 2017; 40:33–40.
(15). Ertas A., Boga M., Gazioglu I., Yesil Y., Hasimi N., Ozaslan C., Yilmaz H., Kaplan M.Chiang Mai J. Sci. 2016; 43:89–99.
(16). Pushparaj S. P., Nellore J., Balaraman R. M., Sekar U., Tippabathani J.Artif. Cells Nanomed. Biotechnol. 2018; 46:268–273.
(17). Adesanwo J. K., Ogundele S. B., Akinpelu D. A., McDonald A. G. J.Explor. Res. Pharmacol. 2017; 2:67–77.

Fig. 1.
The kill curves of B. subtilis when exposed to different concentrations of S. macrophylla seed extracts. The antibacterial activity of the extract was concentration-dependent.
nps-25-38f1.tif
Table 1.
Antimicrobial activity of S. macrophylla seed extract on wound microorganisms.
Test microorganisms Diameter of zone (mm)
  Seed extract Chloramphenicol (Positive control) Methanol (Negative control)
Gram Positive Bacteria      
S. aureus 13.0 ± 0.6 12.0 ± 0.6 -
B. cereus 15.0 ± 0.6 16.0 ± 1.0 -
B. subtilis 15.0 ± 1.5 16.0 ± 0.6 -
MR SA - 22.0 ± 0.6 -
Gram Negative Bacteria      
P. mirabilis - 14.0 ± 0.6 -
Yersinia sp. - 18.0 ± 0.6 -
E. coli - 11.0 ± 0.6 -
K. pneumoniae - 20.0 ± 0.6 -
S. boydii 15.0 ± 1.0 15.0 ± 1.0 -
A. anitratus 16.0 ± 1.2 15.0 ± 0.6 -
Fungi      
A. niger - - -
M. fulvum - - -
Rhizopus sp. - - -
Yeast      
C. utilis 10.0 ± 1.2 14.0 ± 0.6 -

(-) = No inhibitory activity.

Table 2.
The MIC and MBC of S. macrophylla seed extract on various clinical wound pathogens recorded on broth microdilution assay.
Tested microorganisms MIC (mg/ml) MBC (mg/ml)
B. cereus 3.13 6.25
S. aureus 6.25 25.00
B. subtilis 1.56 3.13
S. boydii 12.50 25.00
A. anitratus 12.50 25.00
C. utilis 12.50 25.00
Table 3.
The GC/MS analysis showed the presence of 21 compounds in the Fraction 1 from methanolic extract of S. macrophylla seeds.
No. RT (min) Compounds PubChem ID Area (%)
1 9.049 (Z)-3-Tetradecene 5362709 0.65
2 11.773 2,4-Di-tert-butylphenol 528937 0.27
3 13.444 1-Hexadecene 12395 1.88
4 16.596 3-Hydroxy-4-(1-oxopropyl)- phenyl acetate 448214 0.51
5 17.701 1-Octadecene 8217 2.54
6 20.373 Methyl hexadecanoate 8181 1.35
7 21.197 Hexadecanoic acid 985 7.00
8 21.643 (E)-5-Eicosene 5364600 2.50
9 23.532 Methyl (Z, Z)-9,12-octadecadienoate 5284421 2.60
10 23.646 Methyl (E)-9-octadecenoate 5280590 3.34
11 24.109 Methyl octadecanoate 8201 1.10
12 24.447 (Z, Z)-9,12-Octadecadienoic acid 3931 17.72
13 24.55 (E)-9-Octadecenoic acid 965 18.56
14 24.888 Methyl 2-hydroxyhexadecanoate 530317 8.19
15 25.271 1-Docosene 74138 2.20
16 26.656 2,6-Bis-(dimethylethyl)-4-methylphenyl 1-methylcyclopropanecarboxylate   5.11
17 27.789 1-O-hexyl 2-O-(5-methyl-2-propan-2-ylcyclohexyl) oxalate - 2.49
18 28.601 Cyclotetracosane 520449 1.09
19 31.714 1-Hexacosene   0.53
20 33.568 (9 Z,12 Z)-1,3-Dihydroxypropan-2-yl octadeca-9,12-dienoate 5365676 10.98
21 36.744 Hexyl 4-methylbenzoate 230182 1.02
TOOLS
Similar articles