Abstract
A popular approach for the study of estrogen receptor α inhibition is to investigate the protein-protein interaction between the estrogen receptor (ER) and the coactivator surface. In our study, we investigated phytochemicals from Rubus coreanus that were able to disrupt ERα and coactivator interaction with an ERα antagonist. The E-screen assay and molecular docking analysis were performed to evaluate the effects of the estrogenic activity of R. coreanus extract and its constituents on the MCF-7 human breast cancer cell line. At 100μ g/mL, R. coreanus extract significantly stimulated cell proliferation (574.57 ± 8.56%). Sanguiin H6, which was isolated from R. coreanus, demonstrated the strongest affinity for the ERα coactivator-binding site in molecular docking analysis, with a binding energy of -250.149. The initial results of the study indicated that sanguiin H6 contributed to the estrogenic activity of R. coreanus through the activation of the ERα coactivator-binding site.
REFERENCES
(1). Oh C. M., Won Y. J., Jung K. W., Kong H. J., Cho H., Lee J. K., Lee D. H., Lee K. H.Cancer Res. Treat. 2016; 48:436–450.
(2). Jung K. W., Won Y. J., Oh C. M., Kong H. J., Lee D. H., Lee K. H.Cancer Res. Treat. 2017; 49:306–312.
(3). Carmichael A. R., Mokbel K.Arch. Plast. Surg. 2016; 43:222–223.
(4). Irelli A., Cocciolone V., Cannita K., Zugaro L., Di Staso M., Lanfiuti Baldi P. L., Paradisi S., Sidoni T., Ricevuto E., Ficorella C.Bone. 2016; 87:169–175.
(5). de Pedro M., Baeza S., Escudero M. T., Dierssen-Sotos T., Gómez-Acebo I., Pollán M., Llorca J.Breast Cancer Res. Treat. 2015; 149:525–536.
(6). Esteva F. J., Hortobagyi G. N.Sci. Am. 2008; 298:58–65.
(7). Jameera Begam A., Jubie S., Nanjan M. J.Bioorg. Chem. 2017; 71:257–274.
(8). Howell S. J., Johnston S. R. D., Howell A.Best Pract. Res. Clin. Endocrinol. Metab. 2004; 18:47–66.
(9). Zheng J., Zhou Y., Li Y., Xu D. P., Li S., Li H. B.Nutrients. 2016; 8:495.
(10). Lee J., Dossett M., Finn C. E.Molecules. 2014; 19:10524–10533.
(11). Heo J.Donguibogam; Yeogang: Korea. 1994; 946–947.
(12). Li J., Du L. F., He Y., Yang L., Li Y. Y., Wang Y. F., Chai X., Zhu Y., Gao X. M.Chem. Biodivers. 2015; 12:1809–1847.
(13). Ju H. K., Cho E. J., Jang M. H., Lee Y. Y., Hong S. S., Park J. H., Kwon S. W. J.Pharm. Biomed. Anal. 2009; 49:820–827.
(14). Choung M. G., Lim J. D.Korean J. Med. Crop Sci. 2012; 20:259–269.
269.(15) Körner W.., Hanf V.., Schuller W.., Kempter C.., Metzqer J.., Haqenmaier H.Sci. Total Environ. 1999. 225:33–48.
(16). Soto A. M., Sonnenschein C., Chung K. L., Fernandez M. F., Olea N., Serrano F. O.Environ. Health Perspect. 1995; 103:113–122.
(17). Lee S., Barron M. G.PloS One. 2017; 12:1–14.
(18). Ng H. W., Zhang W., Shu M., Luo H., Ge W., Perkins R., Tong W., Hong H.BMC Bioinformatics. 2014; 15:1–15.
(19). Pang X., Fu W., Wang J., Kang D., Xu L., Zhao Y., Liu A. L., Du G. H.Oxid. Med. Cell. Longev. 2018; 2018:1–11.
(20). Jordan V. C. J.Med. Chem. 2003; 46:883–908.
(21). McDonnell D. P., Chang C. Y., Norris J. D. J.Steroid Biochem. Mol. Biol. 2000; 74:327–335.
(22). Sun A., Moore T. W., Gunther J. R., Kim M. S., Rhoden E., Du Y., Fu H., Snyder J. P., Katzenellenbogen J. A.Chem. Med. Chem. 2011; 6:654–666.
(23). Park E. J., Lee D., Baek S. E., Kim K. H., Kang K. S., Jang T. S., Lee H. L., Song J. H., Yoo J. E.Bioorg. Med. Chem. Lett. 2017; 27:4389–4392.
(24). Park E. H., Park J. Y., Yoo H. S., Yoo J. E., Lee H. L.Bioorg. Med. Chem. Lett. 2016; 26:3291–3294.
(25). Choi M. H., Shim S. M., Kim G. H. J.Food Sci. Technol. 2016; 53:1214–1221.
(26). Ko H., Jeon H., Lee D., Choi H. K., Kang K. S., Choi K. C.Bioorg. Med. Chem. Lett. 2015; 25:5508–5513.
(27). Helferich W. G., Andrade J. E., Hoagland M. S.Inflammophar-macology. 2008; 16:219–226.
(28). Hsieh C. Y., Santell R. C., Haslam S. Z., Helferich W. G.Cancer Res. 1998; 58:3833–3838.
(29). Lee J. Y., Kim H. S., Song Y. S. J.Tradit. Complement. Med. 2012; 2:96–104.