Journal List > Nat Prod Sci > v.24(4) > 1120280

Chan, Popplewell, Bokesch, McKee, and Gustafson: Five New Stilbenes from the Stem Bark of Artocarpus communis

Abstract

Five new prenylated stilbenes (1–5), along with the known compounds cudraflavone C, trans-4-isopentenyl-3,5,2′,4′-terahydroxystilbene, trans-4-(3-methyl-E-but-1-enyl)-3,5,2′,4′-tetrahydroxystilbene, pannokin G, cycloartobiloxanthone, artonin P, morusin, artocarpin, artonin E, kuwanon C, artobiloxanthone, and artoindonesianin C (6–17) were isolated from the stem bark of the tropical tree Artocarpus communis. The structures were established by NMR spectroscopic analysis, MS studies, and comparison with spectral data reported in the literature.

REFERENCES

(1). Jagtap U. B., Bapat V. A. J.Ethnopharmacol. 2010; 129:142–166.
(2). Sikarwar M. S., Hui B. J., Subramaniam K., Valeisamy B. D., Yean L. K., Balaji K. J.Appl. Pharm. Sci. 2014; 4:91–97.
(3). McKee T. C., Rabe D., Bokesch H. R., Grkovic T., Whitson E. L., Diyabalanage T., Van Wyk A. W. W., Marcum S. R., Gardella R. S., Gustafson K. R., Linehan W. M., McMahon J. B., Bottaro D. P. J.Nat. Prod. 2012; 75:1632–1636.
(4). Löfstedt T., Fredlund E., Holmquist-Mengelbier L., Pietras A., Ovenberger M., Poelinger L., Pahlman S.Cell Cycle. 2007; 8:919–926.
(5). Bokesch H. R., Gardella R. S., Rabe D. C., Bottaro D. P., Linehan W. M., McMahon J. B., McKee T. C.Chem. Pharm. Bull. 2011; 59:1178–1179.
(6). McCloud T. G.Molecules. 2010; 15:4526–4563.
(7). Toume K., Habu T., Arai M. A., Koyano T., Kowithayakorn T., Ishibashi M. J.Nat. Prod. 2015; 78:103–110.
(8). Pacher T., Seger C., Engelmeier D., Vajrodaya S., Hofer O., Greger H. J.Nat. Prod. 2002; 65:820–827.
(9). Kostecki K., Engelmeier D., Pacher T., Hofer O., Vajrodaya S., Greger H.Phytochemistry. 2004; 65:99–106.
(10). Hano Y.Heterocycles. 1990; 31:1339–1344.
(11). Takasugi M, Muñoz L., Masamune T., Shirata A., Takahashi K.Chem. Lett. 1978; 7:1241–1242.
(12). Boonlaksiri C., Oonanant W., Kongsaeree P., Kittakoop P., Tanticharoen M., Thebtaranonth Y.Phytochemistry. 2000; 54:415–417.
(13). Sultanbawa M. U. S., Surendrakumar S.Phytochemistry. 1989; 28:599–605.
(14). Hano Y., Inami R., Nomura T.Heterocycles. 1993; 35:1341–1350.
(15). Nomura T., Fukai T., Yamada S., Katayanagi M.Chem. Pharm. Bull. 1976; 24:2898–2900.
(16). Nomura T., Fukai T.Heterocycles. 1979; 12:1289–1295.
(17). Lin C. N., Lu C. M., Huang P. L.Phytochemistry. 1995; 39:1447–1451.
1451.(18) Sato M.., Fujiwara S.., Tsuchiya H.., Fujii T.., Iinuma M.., Tosa H.., Ohkawa Y. J.Ethnopharmacol. 1996. 54:171–176.
(19). Hano Y., Yamagami Y., Kobayashi M., Isohata R., Nomura T.Heterocycles. 1990; 31:877–882.
(20). Nomura T., Fukai T., Katayanagi M.Chem. Pharm. Bull. 1977; 25:529–532.
(21). Makmur L., Syamsurizal S., Tukiran T., Achmad S. A., Aimi N., Hakim E. H., Kitajima M., Takayama H. J.Nat. Prod. 2000; 63:243–244.

Fig. 1.
Structures of compounds 1–5 isolated from Artocarpus communis.
nps-24-266f1.tif
Fig. 2.
Key HMBC correlations for compounds 1–5.
nps-24-266f2.tif
Table 1.
1 H NMR Assignments (600 MHz, CD3 OD) for compounds 1–5
  1 2 3 4 5
position δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz)
1          
2     7.04, s   7.03, d (2.1)
3          
4          
5          
6 7.08, s 7.14, s 7.04, s 7.11, s 7.11, d (2.1)
7 3.41, d (7.0) 6.71, d (9.9) 3.33, m 6.64, d (9.7) 6.38, d (9.70)
8 5.20, br t (7.3) 5.63, d (10.0) 5.34, br t (7.3) 5.68, d (10.0) 5.70, d (9.6)
9          
10 1.80, s 1.39, s 1.75, s 1.45, s 1.41, s
11 1.68, s 1.39, s 1.77, s 1.45, s 1.41, s
12 3.27, d (7.3) 3.20, d (7.3) 3.33, m 6.35, d (8.9) 3.27, d (7.5)
13 5.33, br t (7.3) 5.26, m 5.34, br t (7.3) 5.60, d (9.0) 5.28, tt (1.6, 7.5)
14          
15 1.75, s 1.76, s 1.75, s 1.42, s 1.74, s
16 1.77, s 1.73, s 1.77, s 1.42, s 1.76, s
α 7.32, d (16.2) 7.32, d (16.3) 6.85, d (16.5) 7.24, d (16.2) 6.92, d (16.2)
β 6.71, d (16.2) 6.76, d (16.3) 6.68, d (16.6) 6.87, d (16.4) 6.80, d (16.2)
1′          
2′ 6.46, d (2.2) 6.47, d (2.1) 6.46, s 6.45, s 6.45, d (2.3)
3′          
4′ 6.14, br t (2.2) 6.15, t (2.1)   6.16, m 6.16, t (2.2)
5′          
6′ 6.46, d (2.2) 6.47, d (2.1) 6.46, s 6.45, s 6.45, d (2.3)
4′-CH3     2.03, s    
Table 2.
13C NMR Assignments (150 MHz, CD3 OD) for compounds 1–5
  1 2 3 4 5
position δC, type δC, type δC, type δC, type δC, type
1 119.6, C 119.6, C 130.8, C 119.3, C 131.2, C
2 152.5, C 149.9, C 126.2, CH 152.2, C 123.2, CH
3 118.8, C 112.0, C 130.1, C 111.2, C 122.6, C
4 154.2, C 152.2, C 153.5, C 149.6, C 151.6, C
5 122.5, C 122.9, C 130.1, C 116.0, C 130.4, C
6 124.6, CH 127.2, CH 126.2, CH 124.1, CH 128.8, CH
7 24.0, CH2 118.6, CH 29.7, CH2 117.7, CH 123.6, CH
8 124.3∗, CH 129.8, CH 123.9, CH 130.3, CH 132.0, CH
9 132.3, C 76.3, C 133.4, C 77.5, C 77.4, C
10 18.0, CH3 27.9, CH3 18.0, CH3 28.2, CH3 28.2, CH3
11 26.0, CH3 27.9, CH3 26.0, CH3 28.2, CH3 28.2, CH3
12 29.4, CH2 29.1, CH2 29.7, CH2 123.2, CH 29.4, CH2
13 124.2, CH 124.8, CH 123.9, CH 129.4, CH 124.1, CH
14 133.2, C 132.0, C 133.4, C 77.9, C 132.7, C
15 17.9, CH3 18.0, CH3 18.0, CH3 28.4, CH3 18.0, CH3
16 26.0, CH3 26.0, CH3 26.0, CH3 28.4, CH3 26.0, CH3
α 125.0, CH 124.6, CH 128.8, CH 123.5, CH 129.3, CH
β 127.2, CH 127.4, CH 127.0, CH 127.7, CH 127.5, CH
1′ 141.9, C 141.9, C 137.4, C 141.7, C 141.2, C
2′ 105.8, CH 105.8, CH 105.5, CH 105.7, CH 105.8, CH
3′ 159.8, C 159.6, C 157.6, C 159.7, C 159.8, C
4′ 102.6, CH 102.5, CH 111.6, C 102.6, CH 102.8, CH
5′ 159.8, C 159.6, C 157.6, C 159.7, C 159.8, C
6′ 105.8, CH 105.8, CH 105.5, CH 105.7, CH 105.8, CH
4′-CH3     8.6, CH3    

interchangeable

TOOLS
Similar articles