Journal List > Ann Clin Microbiol > v.22(1) > 1119059

Kim, Bae, Kim, Song, Kim, Jeong, and Shin: Development and Evaluation of Multiplex PCR for the Detection of Carbapenemase-Producing Enterobacteriaceae

Abstract

Background

The isolation of carbapenemase-producing Enterobacteriaceae (CPE) has become increasingly common. Continuous surveillance for these organisms is essential because their infections are closely related to outbreaks of illness and are associated with high mortality rates. The aim of this study was to develop and evaluate multiplex PCR as a means of detecting several important CPE genes simultaneously.

Methods

We aimed to develop a multiplex PCR that could detect seven CPE genes simultaneously. The multiplex PCR was composed of seven primer sets for the detection of KPC, IMP, VIM, NDM-1, GES, OXA-23, and OXA-48. We designed different PCR product sizes of at least 100 bp. We evaluated the performance of this new test using 69 CPE-positive clinical isolates. Also, we confirmed the specificity to rule out false-positive reactions by using 71 carbapenem-susceptible clinical strains.

Results

A total of 69 CPE clinical isolates showed positive results and were correctly identified as KPC (N=14), IMP (N=13), OXA-23 (N=12), OXA-48 (N=11), VIM (N=9), GES (N=5), and NDM (N=5) by the multiplex PCR. All 71 carbapenem-susceptible clinical isolates, including Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, showed negative results.

Conclusion

This multiplex PCR can detect seven CPE genes at a time and will be useful in clinical laboratories.

Figures and Tables

Fig. 1

Multiplex PCR for the detection of seven carbapenemase-producing Enterobacteriaceae genes. Abbreviations: M, molecular weight marker; N, negative control. Lane: IMP (180 bp), VIM (306 bp), NDM (410 bp), OXA-23 (505 bp), OXA-48 (602 bp), KPC (747 bp), and GES (855 bp).

acm-22-9-g001
Table 1

Clinical strains of carbapenemase-producing Enterobacteriaceae used in this study

acm-22-9-i001
Table 2

Carbapenem-susceptible clinical strains tested (n=71)

acm-22-9-i002
Table 3

Primers used in this study

acm-22-9-i003

ACKNOWLEDGMENTS

This research was supported by a fund (2017-ER5402-01) by Research of Korea Centers for Disease Control and Prevension.

References

1. Pitout JD. Infections with extended-spectrum beta-lactamaseproducing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs. 2010; 70:313–333.
pmid
2. Nordmann P, Naas T, Poirel L. Global spread of carbapenemaseproducing Enterobacteriaceae. Emerg Infect Dis. 2011; 17:1791–1798.
pmid pmc
3. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011; 53:60–67.
pmid
4. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009; 9:228–236.
crossref pmid
5. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012; 25:682–707.
pmid pmc
6. Jeong SH, Song W, Bae IK, Kim HS, Kim JS, Park MJ, et al. Broth microdilution methods using B-lactamase inhibitors for the identification of Klebsiella pneumoniae carbapenemases and metallo-β-lactamases in Gram-negative bacilli. Ann Clin Lab Sci. 2014; 44:49–55.
pmid
7. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol. 2007; 45:2723–2725.
pmid pmc
8. Pasteran F, Mendez T, Rapoport M, Guerriero L, Corso A. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of enterobacteriaceae by incorporating boronic acid. J Clin Microbiol. 2010; 48:1323–1332.
crossref pmid pmc
9. Yoon EJ, Yang JW, Kim JO, Lee H, Lee KJ, Jeong SH. Carbapenemase-producing Enterobacteriaceae in South Korea: a report from the National Laboratory Surveillance System. Future Microbiol. 2018; 13:771–783.
pmid
10. Yoon EJ, Kim JO, Yang JW, Kim HS, Lee KJ, Jeong SH, et al. The blaOXA-23-associated transposons in the genome of Acinetobacter spp. represent an epidemiological situation of the species encountering carbapenems. J Antimicrob Chemother. 2017; 72:2708–2714.
crossref pmid
11. Bush K. Alarming β-lactamase-mediated resistance in multidrugresistant Enterobacteriaceae. Curr Opin Microbiol. 2010; 13:558–564.
12. Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol. 2009; 30:1180–1185.
crossref pmid pmc
13. Park JW, Lee EJ, Lee DH. Status of carbapenemase producing Enterobacteriaceae in Korea, 2014. Public Health Wkly Rep. 2016; 9:9–13.
14. CLSI. Performance standards for antimicrobial susceptibility testing. CLSI document M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute;2013.
15. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenemresistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009; 63:659–667.
crossref pmid
16. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011; 70:119–123.
crossref pmid
17. You JS. Emergence and characteristics of carbapenemase-producing Enterobacteriaceae (CPE) in Korea, 2012. Public Health Wkly Rep. 2013; 6:425–428.
18. Huang TD, Bogaerts P, Ghilani E, Heinrichs A, Gavage P, Roisin S, et al. Multicentre evaluation of the Check-Direct CPE® assay for direct screening of carbapenemase-producing Enterobacteriaceae from rectal swabs. J Antimicrob Chemother. 2015; 70:1669–1673.
pmid
TOOLS
Similar articles