Journal List > Nat Prod Sci > v.24(4) > 1111875

Nugroho, Choi, Seong, Song, Park, and Park: Isolation of Flavonoid Glycosides with Cholinesterase Inhibition Activity and Quantification from Stachys japonica

Abstract

The three flavone glycosides, 4′-O-methylisoscutellarein 7-O-(6″′-O-acetyl)-β-D-allopyranosyl(1 → 2)-β-D-glucopyranoside (1), isoscutellarein 7-O-(6″′-O-acetyl)-β-D-allopyranosyl(1 → 2)-β-D-glucopyranoside (3), and isoscutellarein 7-O-β-D-allopyranosyl(1 → 2)-β-D-glucopyranoside (4) in addition to a flavonol glycoside, kaempferol 3-O-β-D-glucopyranoside (astragalin, 2), were isolated from Stachys japonica (Lamiaceae). In cholinesterase inhibition assay, compound 1 significantly inhibited aceylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (IC50 s, 39.94 μ g/ml for AChE and 86.98 μ g/ml for BChE). The content of isolated compounds were evaluated in this plant extract by HPLC analysis. Our experimental results suggest that the flavonoid glycosides of S. japonica could prevent the memory impairment of Alzheimer's disease.

REFERENCES

(1). Balkis A., Tran K., Lee Y. Z., Ng K.See comment in PubMed Commons below J. Agric. Sci. 2015; 7:1916–9760.
(2). Luo W., Chen Y., Wang T., Hong C., Chang L. P., Chang C. C., Yang Y. C., Xie S. Q., Wang C. J.Bioorg. Med. Chem. 2016; 24:672–680.
(3). Kim T. J.Korean Plant Resources; Publishing Center of Seoul National University: Korea. 1996; 54–55.
(4). Nishimura H., Sasaki H., Inagaki N., Chin M., Mitsuhashi H.Phytochemistry. 1991; 30:965–969.
(5). Harada S., Tsujita T., Ono A., Miyagi K., Mori T., Tokuyama S. J.Nutr. Sci. Vitaminol. 2015; 61:167–174.
(6). Rahimi Khoigani S., Rajaei A., Goli S. A.Nat. Prod. Res. 2017; 31:355–358.
(7). Venditti A., Serrilli A. M., Di Cecco M., Ciaschetti G., Andrisano T., Bianco A.Nat Prod Res. 2013; 27:190–193.
(8). Petreska J., Stefova M., Ferreres F., Moreno D. A., Tomás-Barberán F. A., Stefkov G., Kulevanova S., Gil-Izquierdo A.Food Chem. 2011; 125:13–20.
(9). Pereira O. R., Domingues M. R. M., Silva A. M. S., Cardoso S. M.Food Res. Intern. 2012; 48:330–335.
(10). Cui Q., Pan Y., Xu X., Zhang W., Wu X., Qu S., Liu X.Fitoterapia. 2016; 109:67–74.
(11). Park H. J., Nugroho A., Jung B. R., Won Y. H., Jung Y. J., Kim W. B., Choi J. S. Kor. J.Plant Res. 2010; 23:393–398.
(12). Park H. J., Young H. S., Park K. Y., Rhee S. H., Chung H. Y., Choi J. S.Arch. Pharm. Res. 1991; 14:167–171.
(13). Teles Y. C. F., Horta C. C. R., de Fátima Agra M., Siheri W., Boyd M., Igoli J. O., Gray A. I., de Fátima Vanderlei de Souza M.Molecules. 2015; 20:20161–20172.
(14). Ellman G. L., Courtney K. D., Andres V. Jr., Feather-stone R. M.Biochem. Pharmacol. 1961; 7:88–95.
(15). Demirtas I., Gecibesler I. H., Yaglioglu A. S.Phytochemistry Lett. 2013; 6:209–214.
(16). Venditti A., Bianco A., Nicoletti M., Quassinti L., Bramucci M., Lupidi G., Vitali L. A., Papa F., Vittori S., Petrelli D., Maleci Bini L., Giuliani C., Maggi F.Chem. Biodivers. 2014; 11:245–261.
(17). Brühmann C., Marston A., Hostettmann K., Carrupt P. A., Testa B.Chem. Biodivers. 2004; 1:819–829.
(18). Kubínová R., Švajdlenka E., Jankovská D.Nat. Prod. Res. 2016; 30:1174–1177.
(19). Goutman J. D., Waxemberg M. D., Doñate-Oliver F., Pomata P. E., Calvo D. J.Eur. J. Pharmacol. 2003; 461:79–87.

Fig. 1.
Structure of flavonoid glycosides (1–4) isolated from S. japonica and their aglycones (2a and 3a).
nps-24-259f1.tif
Fig. 2.
HPLC chromatogram of standard compounds and 80% MeOH fraction of S. japonica.
nps-24-259f2.tif
Table 1.
1H-NMR data of compounds 1, 3, and 4 isolated from S. japonica (600 MHz, DMSO-d6)
Position 1 3 4
Aglycone-3 6.84 (1H, s) 6.84 (1H, s) 6.83 (1H, s)
5-OH 12.32 (1H, s) 12.36 (1H, s) 12.40 (1H, s)
6 6.71 (1H, s) 6.71 (1H, s) 6.66 (1H, s)
2′ 8.11 (1H, d, J = 9.0 Hz) 8.00 (1H, d, J = 9.0 Hz) 8.00 (1H, d, J = 9.0 Hz)
3′ 7.15 (1H, d, J = 9.0 Hz) 6.96 (1H, d, J = 9.0 Hz) 6.97 (1H, d, J = 9.0 Hz)
5′ 7.15 (1H, d, J = 9.0 Hz) 6.96 (1H, d, J = 9.0 Hz) 6.97 (1H, d, J = 9.0 Hz)
6′ 8.11 (1H, d, J = 9.0 Hz) 8.00 (1H, d, J = 9.0 Hz) 8.00 (1H, d, J = 9.0 Hz)
OMe 3.89 (3H, s) - -
Glucose-1 5.09 (1H, d, J = 7.8 Hz) 5.08 (1H, d, J = 7.8 Hz) 5.11 (1H, d, J = 7.8 Hz)
2 3.60 (1H, m) 3.60 (1H, m) 3.60 (1H, m)
3 3.48 (1H, m) 3.49 (1H, m) 3.49 (1H, m)
4 3.27 (1H, m) 3.27 (1H, m) 3.27 (1H, m)
5 3.55 (1H, m) 3.55 (1H, m) 3.54 (1H, m)
6 3.52 (1H, m) 3.51 (1H, m) 3.49 (1H, m)
  3.76 (1H, m) 3.76 (1H, m) 3.74 (1H, m)
Allose-1 4.93 (1H, d, J = 7.8 Hz) 4.92 (1H, d, J = 7.8 Hz) 4.92 (1H, d, J = 7.8 Hz)
2 3.27 (1H, m) 3.27 (1H, m) 3.27 (1H, m)
3 3.93 (1H, m) 3.93 (1H, m) 3.23 (1H, m)
4 3.43 (1H, m) 3.43 (1H, m) 3.34 (1H, m)
5 3.89 (1H, m) 3.88 (1H, m) 3.64 (1H, m)
6a 4.06 (2H, m) 4.05 (2H, m) 3.41 (1H, m)
6b -   3.55 (1H, m)
OAc 1.89 (3H, s) 1.89 (3H, s) -
Table 2.
13 C-NMR data of compounds 1, 3, and 4 isolated from S. japonica (150 MHz, DMSO-d6)
Position 1 3 4
Isoscutellarein 2 164.1 164.1 164.6
3 103.0 103.1 103.1
4 182.9 182.8 182.8
5 152.7 152.7 152.9
6 100.0 100.0 99.3
7 151.1 151.0 151.7
8 128.0 128.0 127.7
9 144.3 144.2 144.8
10 106.1 106.1 105.7
1′ 123.4 121.7 121.7
2′ 129.0 129.1 129.1
3′ 115.1 116.4 116.5
4′ 163.0 161.9 161.9
5′ 115.1 116.4 116.5
6′ 129.0 129.1 129.1
OMe 56.1 -  
Glc 1 100.6 100.6 100.2
2 83.0 83.1 81.8
3 77.7 77.7 77.6
4 69.8 69.8 69.8
5 76.1 76.1 76.2
6 61.1 61.1 61.1
All 1 103.9 103.2 102.2
2 72.0 72.0 71.5
3 71.3 71.3 72.0
4 67.4 67.3 67.7
5 72.0 72.0 75.0
6 64.0 64.0 61.5
COCH3 20.9 20.9 -
COCH3 170.8 170.8 -
Table 3.
Cholinesterase inhibitory activities of the S. japonica extract, its fractions and isolated compounds
Samples AChEa BChE
Mean ± SEM Mean ± SEM
Aq. MeOH extract 86.09 ± 1.27 172.88 ± 0.71
CHCl3 fraction 68.66 ± 1.32 133.96 ± 2.43
BuOH fraction 74.20 ± 2.20 117.94 ± 7.61
1 39.94 ± 0.76 86.98 ± 1.72
2 66.76 ± 2.82 > 200
3 65.40 ± 0.45 109.76 ± 2.79
4 59.55 ± 2.92 160.84 ± 3.26
2a 32.19 ± 0.82 52.34 ± 1.51
3a 58.19 ± 1.11 79.60 ± 0.28
Apigeninb 12.80 ± 0.37 9.18 ± 0.67

a The values (μ g/ml) indicate 50% cholinesteraseinhibitory effects. These data represent the average values of three repeated experiments.

b Positive control.

Table 4.
Linearity of standard curves and limits of detection and quantification for the standard compounds
Compound t R (min) Calibration equation (linear model)a Linear range (µg/ml) R2b LODc (µg/ml) LOQd (µg/ml)
1 20.11 y = 157.68 x + 113.14 7.81–250.0 0.999 1.18 3.95
2 16.92 y = 378.45 x + 106.78 7.81–250.0 0.999 0.51 1.70
2a 22.10 y = 957.20 x + 158.03 7.81–250.0 0.999 0.15 0.49
3 17.22 y = 278.85 x + 122.48 7.81–250.0 0.999 0.63 2.12
3a 17.98 y = 313.95 x + 86.27 7.81–250.0 0.999 0.68 2.27
4 14.83 y = 95.75 x + 55.73 7.81–250.0 0.999 2.03 6.76

a y, peak area at 254nm; x, concentration of the standard (µg/ml);

b R2, correlation coefficient for 6 data points in the calibration curves (n =4)

c LOD, limit of detection (S/N = 3);

d LOQ, limit of quantification (S/N = 10).

Table 5.
Content of six compounds (mg/g) in the extract and fractions of Stachys
Fraction/ extract Analytes Total
1 2 2a 3 3a 4
80% MeOH fraction 55.96 50.94 2.43 153.54 4.45 53.70 321.03
BuOH fraction 26.76 24.36 1.16 73.43 2.13 25.68 153.54
MeOH extract 3.19 2.90 0.14 8.75 0.25 3.06 18.30
Dry plant material 0.33 0.30 0.01 0.91 0.03 0.32 1.90

The data was present as average of three determinations.

TOOLS
Similar articles