Journal List > Nat Prod Sci > v.24(4) > 1111870

Lee, Quilantang, Lee, Geraldino, Kim, and Lee: Quantitative Analysis of Dammarane-type Ginsenosides in Different Ginseng Products

Abstract

Ginseng products available in different forms and preparations are reported to have varied bioactivities and chemical compositions. In our previous study, four new dammarane-type ginsenosides were isolated from Panax ginseng, which are ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4). Accordingly, the goal of this study was to determine the distribution and content of these newly characterized ginsenosides in different ginseng products. The content of compounds 1–4 in different ginseng products was determined via HPLC-UV. The samples included ginseng roots from different ginseng species, roots harvested from different localities in Korea, and samples harvested at different cultivation ages and processed under different manufacturing methods. The four ginsenosides were present at varying concentrations in the different ginseng samples examined. The variations in their content could be attributed to species variation, and differences in cultivation conditions and manufacturing methods. The total concentration of compounds 1–4 were highest in ginseng obtained from Geumsan (185 µg/g), white-6 yr ginseng (150 µg/g), and P. quinquefolius (186 µg/g). The results of this study provide a basis for the optimization of cultivation conditions and manufacturing methods to maximize the yield of the four new ginsenosides in ginseng.

REFERENCES

(1). Li T.S.C.Hort. Technol. 1995; 5:27–34.
(2). Coon J.T., Ernst E.Drug Safety. 2002; 25:323–344.
(3). Attele A., Zhou P., Xie J.T., Wu J.A., Zhang L., Dey L., Pugh W., Rue P., Polonsky K., Yuan C.S.Diabetes. 2002; 51:1851–1858.
(4). Shibata S. J.Korean Med. Sci. 2001; 16:S28–37.
(4). Shibata S. J.Korean Med. Sci. 2001; 16:S28–37.
(5). Siddiqi M.H., Siddiqi M.Z., Ahn S., Kang S., Kim Y.J., Sathishkumar N., Yang D.U., Yang D.C.J. Ginseng Res. 2013; 37:261–268.
(6). Kitts D.D., Wijewickreme A.N., Hu C.Mol. Cell Biochem. 2000; 203:1–10.
crossref
(7). Karu N., Reifen R., Kerem Z. J.Agric. Food Chem. 2007; 55:2824–2828.
(8). Yue P.Y.K., Mak N.K., Cheng Y.K., Leung K.W., Ng T.B., Fan D.T.P., Yeung H.W., Wong R.N.S.Chin. Med. 2007; 2:1–21.
(9). Jang H.E., Jung H.J., Mok H.J.Appl. Biol. Chem. 2017; 60:321–326.
(10). Proctor J.T., Bailey W.Hort. Rev. 1987; 9:187–236.
(11). Baeg I.H., So S.H. J.Ginseng Res. 2013; 37:1–7.
(12). Wang W., Zhao Y., Rayburn E., Hill D., Wang H., Zhang R.Cancer Chemother. Pharmacol. 2007; 59:589–601.
(13). Wang J., Li S., Fan Y., Chen Y., Liu D., Cheng H., Gao X., Zhou Y. J.Ethnopharmacol. 2010; 130:421–423.
(14). Matsunaga H., Mitsuo K., Yamamoto H., Fujito H., Mori M., Takata K.Chem. Pharm. Bull. 1990; 38:3480–3482.
(15). Joo K.M., Park C.H., Jeong H.J., Lee S.J., Chang I.S. J.Chromatography B. 2008; 865:159–166.
(16). Christensen L.Adv. Food. Nutr. Res. 2008; 55:1–99.
(17). Lee D.G., Lee A.H., Kim K.T., Cho E.J., Lee S.Chem Pharm Bull. 2015; 63:927–934.
(18). Lee C.R., Whang W.K., Shin C.G., Lee H.S., Han S.T., Im B.O., Ko S.K. Kor. J.Food Sci. Technol. 2004; 36:847–850.
(19). Lee S.A., Liuting H.K., Im B.O., Cho S.H., Whang W.K., Ko S.K. Kor. J.Pharmacogn. 2010; 41:319–322.
(20). Ahn S.I., Kim S.K., Yang B.W., Lee E.S., Kang C.S., Hahm Y.T. Kor. J.Hort. Sci. Tech. 2016; 34:790–798.
(21). Dong H.D., Cho C.W., Kim Y.C., Kim E.Y., Rhee Y.K., Rho J.H., Choi S.H. J.Ginseng Res. 2012; 36:314–321.
(22). Lim C.Y., Moon J.M., Kim B.Y., Lim S.H., Lee G.S., Yu H.S., Cho S.I. J.Ginseng Res. 2015; 39:38–45.
(23). Cui J.F.Eur. J. Pharm. Sci. 1995; 3:77–85.
(24). Keum Y.S., Park K.Y., Lee J.M., Chun K.S., Park J.H., Lee S.K., Kwon H.J., Surh Y.J.Cancer Lett. 2000; 150:41–48.
(25). Kim D.H. J.Ginseng Res. 2012; 36:1–15.
(26). Lee M.J., Choi J.S., Woo S.W., Lee K.S., Lee Z.W., Hwang G.S., Lee S.H., Kamal A.H.M., Jung Y.A., Seung N.S., Woo S.H.Process Biochem. 2011; 46:258–264.

Fig. 1.
Chemical structures of ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4).
nps-24-229f1.tif
Fig. 2.
Calibration curves of ginsenoside Rg18 (A), 6-acetyl ginsenoside Rg3 (B), ginsenoside Rs11 (C), and ginsenoside Re7 (D).
nps-24-229f2.tif
Fig. 3.
HPLC chromatogram of the standard mixture of ginsenoside Rg18 (1), 6-acetyl ginsenoside Rg3 (2), ginsenoside Rs11 (3), and ginsenoside Re7 (4).
nps-24-229f3.tif
Fig. 4.
HPLC chromatograms of the EtOH extracts of samples from Geumsan (A), Red-4 yr ginseng (B), and P. quinquefolius (C).
nps-24-229f4.tif
Table 1.
Content of ginsenosides 1–4 in ginseng samples from different localities in Korea
Sample Content (µg/g)
1 2 3 4 Total
Geumsan 6.0 ± 1.0 11.0 ± 1.0 7.0 ± 1.0 161.0 ± 22.0 185.0 ± 25.0
Yeongju 7.0 ± 1.0 12.0 ± 1.0 6.0 ± 1.0 34.0 ± 3.0 59.0 ± 6.0
Jinan 7.0 ± 1.0 20.0 ± 1.0 8.0 ± 1.0 31.0 ± 4.0 66.0 ± 7.0

Data are represented as mean ± S.D. (n = 3) in µg/g of the EtOH extracts of samples

Table 2.
Content of ginsenosides 1–4 in ginseng harvested at different cultivation ages and processed under different manufacturing methods
Sample Content (µg/g)
1 2 3 4 Total
Straight-4 yr 56.0 ± 1.0 11.0 ± 1.0 53.0 ± 1.0 519.0 ± 1.0 539.0 ± 4.0
Straight-5 yr 58.0 ± 1.0 14.0 ± 1.0 10.0 ± 1.0 523.0 ± 1.0 555.0 ± 4.0
Straight-6 yr 56.0 ± 1.0 17.0 ± 1.0 13.0 ± 1.0 514.0 ± 1.0 550.0 ± 4.0
White-4 yr 14.0 ± 1.0 19.0 ± 1.0 16.0 ± 1.0 556.0 ± 6.0 105.0 ± 9.0
White-5 yr 14.0 ± 1.0 25.0 ± 1.0 11.0 ± 2.0 529.0 ± 4.0 579.0 ± 8.0
White-6 yr 10.0 ± 1.0 19.0 ± 1.0 15.0 ± 2.0 106.0 ± 5.0 150.0 ± 9.0
Red-4 yr 18.0 ± 1.0 24.0 ± 1.0 16.0 ± 2.0 577.0 ± 14.0 135.0 ± 18.0
Red-5 yr 13.0 ± 1.0 18.0 ± 1.0 15.0 ± 1.0 579.0 ± 3.0 125.0 ± 6.0
Red-6 yr 14.0 ± 1.0 20.0 ± 1.0 22.0 ± 1.0 580.0 ± 12.0 136.0 ± 15.0

Data are represented as mean ± S.D. (n = 3) in µg/g of the dried samples.

Table 3.
Content of ginsenosides 1–4 in different ginseng species
Sample Content (µg/g)
1 2 3 4 Total
P. ginseng (Korea) 14.0 ± 1.0 25.0 ± 1.0 11.0 ± 2.0 29.0 ± 4.0 579.0 ± 8.0
P. notoginseng (China) 23.0 ± 1.0 17.0 ± 2.0 11.0 ± 1.0 56.0 ± 13.0 107.0 ± 17.0
P. quinquefolius (America) 36.0 ± 1.0 22.0 ± 1.0 31.0 ± 4.0 97.0 ± 8.0 186.0 ± 14.0

Data are represented as mean ± S.D. (n = 3) in µg/g of the dried samples.

TOOLS
Similar articles