Journal List > Int J Thyroidol > v.11(2) > 1109112

Kang, Shong, Kim, and Koo: Prognostic Significance of Sirtuins Expression in Papillary Thyroid Carcinoma

초록

Background and Objectives

Sirtuins (SIRTs) play important roles in cellular and organismal homeostasis. They have distinct gene expression patterns in various cancers; however, the relationship between SIRT expression and the progression of thyroid cancer is unclear. We investigated the expression of SIRTs in patients with papillary thyroid carcinoma (PTC) and their role as biomarkers for predicting the aggressiveness of this disease.

Materials and Methods

We used immunohistochemical staining to evaluate the expression of SIRT1 and SIRT3 in tumor specimens from 270 patients with PTC. We also evaluated the potential association between SIRT expression and diverse clinicopathological features.

Results

High SIRT1 expression was negatively correlated with lymphovascular invasion, central lymph node metastasis, and lateral lymph node metastasis. Multivariate analyses revealed that high SIRT1 expression was a negative independent risk factor for lateral lymph node metastasis. By contrast, high SIRT3 expression was positively correlated with locoregional recurrence. Interes-tingly, when patients were grouped by tumor SIRT expression patterns, the group with low SIRT1 expression and high SIRT3 expression was correlated with more aggressive cancer phenotypes including central lymph node metastasis and lateral lymph node metastasis.

Conclusion

Our results suggest that SIRTs play dual roles in tumor progression, and the combination of decreased SIRT1 expression and increased SIRT3 expression is significantly associated with a poor prognosis in patients with PTC.

REFERENCES

1). Guarente L. Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med. 2011; 364(23):2235–44.
2). Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000; 273(2):793–8.
crossref
3). Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012; 21(3):297–308.
crossref
4). Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 2015; 15(10):608–24.
crossref
5). Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74.
crossref
6). Mirebeau-Prunier D, Le Pennec S, Jacques C, Fontaine JF, Gueguen N, Boutet-Bouzamondo N, et al. Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors. PLoS One. 2013; 8(3):e58683.
crossref
7). Lee MH, Lee SE, Kim DW, Ryu MJ, Kim SJ, Kim SJ, et al. Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab. 2011; 96(1):E19–30.
crossref
8). Herranz D, Maraver A, Canamero M, Gomez-Lopez G, Inglada-Perez L, Robledo M, et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene. 2013; 32(34):4052–6.
crossref
9). Kweon KH, Lee CR, Jung SJ, Ban EJ, Kang SW, Jeong JJ, et al. Sirt1 induction confers resistance to etoposide-induced genotoxic apoptosis in thyroid cancers. Int J Oncol. 2014; 45(5):2065–75.
crossref
10). Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009; 460(7255):587–91.
crossref
11). Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008; 105(28):9793–8.
crossref
12). Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome- associated cancer. Nat Commun. 2010; 1:3.
crossref
13). Fang Y, Nicholl MB. Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett. 2011; 306(1):10–4.
crossref
14). Deng CX. SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 2009; 5(2):147–52.
crossref
15). Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 2007; 67(14):6612–8.
crossref
16). Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005; 19(10):1751–9.
crossref
17). Lim CS. SIRT1: tumor promoter or tumor suppressor? Med Hypotheses. 2006; 67(2):341–4.
crossref
18). Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008; 8(4):333–41.
crossref
19). Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 2008; 3(4):e2020.
crossref
20). Kabra N, Li Z, Chen L, Li B, Zhang X, Wang C, et al. SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J Biol Chem. 2009; 284(27):18210–7.
crossref
21). Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008; 32(1):11–20.
crossref
22). Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007; 27(24):8807–14.
crossref
23). Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010; 464(7285):121–5.
24). Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009; 119(9):2758–71.
crossref
25). Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS One. 2010; 5(5):e10486.
crossref
26). Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne AP, George WD, et al. Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer. 2006; 95(8):1056–61.
crossref
27). Allison SJ, Milner J. SIRT3 is pro-apoptotic and participates in distinct basal apoptotic pathways. Cell Cycle. 2007; 6(21):2669–77.
crossref
28). Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 2005; 65(22):10457–63.
crossref
29). Bell EL, Guarente L. The SirT3 divining rod points to oxidative stress. Mol Cell. 2011; 42(5):561–8.
crossref
30). Hallows WC, Yu W, Smith BC, Devries MK, Ellinger JJ, Someya S, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell. 2011; 41(2):139–49.
crossref
31). Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008; 14(4):312–23.
crossref
32). Jang KY, Noh SJ, Lehwald N, Tao GZ, Bellovin DI, Park HS, et al. SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS One. 2012; 7(9):e45119.
crossref

Fig. 1.
Immunohistochemical evaluation of sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) expression in papillary thyroid carcinoma (PTC) tissue. (A) Representative immunohistochemical images of SIRT1. (B) Representative immunohistochemical images of SIRT3. 0: no staining intensity, +1: weak staining intensity, +2: moderate staining intensity, +3: strong staining intensity (magnification ×100)
ijt-11-143f1.tif
Table 1.
Clinicopathologic parameters of patients (n=270)
Variables Mean±SD or number of patients (%)
Age, years   48.3±12.4
Gender Male 47 (17.4)
  Female 223 (82.6)
Tumor size ≤1 cm 110 (40.7)
  >1 cm 160 (59.3)
Multicentricity No 158 (58.5)
  Yes 112 (41.5)
Microscopic capsular No 71 (26.3)
invasion Yes 199 (73.7)
Extrathryoid extension No 88 (32.6)
  Yes 182 (67.4)
Lymphovascular invasion No 63 (23.3)
  Yes 207 (76.7)
Lymph node metastasis No 116 (43.0)
  Yes 154 (57.0)
Central lymph node No 116 (43.0)
metastasis Yes 154 (57.0)
Lateral lymph node No 222 (82.2)
metastasis Yes 48 (17.8)
Locoregional recurrence No 233 (86.3)
  Yes 37 (13.7)
Follow-up period (months)   106.6±22.5

SD: standard deviation

Table 2.
Relationships between intensity of sirtuin 1 (SIRT1) staining and clinicopathological factors in 270 patients
Variables No. of patients SIRT1
Low (Grade 1 and 2) High (Grade 3 and 4) p value
Age, years <45 104 66 38 0.411
  ≥45 166 97 69  
Gender Male 47 31 16 0.389
  Female 223 132 91  
Tumor size ≤1 cm 110 61 49 0.171
  >1 cm 160 102 58  
Multicentricity No 158 96 62 0.877
  Yes 112 67 45  
Microscopic capsular invasion No 71 37 34 0.098
  Yes 199 126 73  
Extrathyroid extension No 88 48 40 0.174
  Yes 182 115 67  
Lymphovascular invasion No 63 31 32 0.039
  Yes 207 132 75  
Lymph node metastasis No 116 58 58 0.002
  Yes 154 105 49  
Central lymph node metastasis No 116 58 58 0.002
  Yes 154 105 49  
Lateral lymph node metastasis No 222 122 100 <0.001
  Yes 48 41 7  
Locoregional recurrence No 233 139 94 0.547
  Yes 37 24 13  

p<0.05 between the two categories for a given variable

Table 3.
Multivariate analysis of the relationship between SIRT1 staining and clinicopathologic factors
Factors Exp (β) SE 95.0% CI p value
Lymphovascular invasion 0.645 0.309 (0.352, 1.182) 0.156
Lateral lymph node metastasis 0.233 0.443 (0.097. 0.555) 0.001
Central lymph node metastasis 0.681 0.275 (0.345, 0.849) 0.162

Data analyzed using a stepwise logistic

CI: confidence interval, Exp (β): odds ratio, SE: standard error

value<0.05

Table 4.
Relationships between intensity of sirtuin 3 (SIRT3) staining and clinicopathological factors in 270 patients
Variables No. of patients SIRT3
Low (Grade 1 and 2) High (Grade 3 and 4) p value
Age, years <45 104 52 52 0.175
  ≥45 166 69 97  
Gender Male 47 27 20 0.055
  Female 223 94 129  
Tumor size ≤1 cm 110 54 56 0.241
  >1 cm 160 67 93  
Multicentricity No 158 66 92 0.232
  Yes 112 55 57  
Microscopic capsular invasion No 71 34 37 0.544
  Yes 199 87 112  
Extrathryoid extension No 88 43 45 0.352
  Yes 182 78 104  
Lymphovascular invasion No 63 26 37 0.518
  Yes 207 95 112  
Lymph node metastasis No 116 48 68 0.325
  Yes 154 73 81  
Central lymph node metastasis No 116 48 68 0.325
  Yes 154 73 81  
Lateral lymph node metastasis No 222 95 127 0.151
  Yes 48 26 22  
Locoregional recurrence No 233 111 122 0.019
  Yes 37 10 27  

means p value <0.05

Table 5.
Relationships between patterns of sirtuin staining intensity and clinicopathological factors
Variables SIRT1 low SIRT3 low (n=88) SIRT1 low SIRT3 high (n=75) SIRT1 high SIRT3 low (n=33) SIRT1 high SIRT3 high (n=74) p value
Age, years <45 40 26 12 26 0.444
  ≥45 48 49 21 48  
Gender Male 12 14 11 10 0.368
  Female 76 43 40 64  
Tumor size ≤1 cm 35 26 19 30 0.168
  >1 cm 53 49 14 44  
Multicentricity No 49 47 17 45 0.648
  Yes 39 28 16 29  
Microscopic capsular invasion No 23 14 11 23 0.265
  Yes 65 61 22 51  
Extrathryoid extension No 28 20 15 25 0.289
  Yes 60 55 18 49  
Lymphovascular invasion No 17 14 9 23 0.214
  Yes 71 61 24 51  
Lymph node metastasis No 30 28 18 40 0.025
  Yes 58 47 15 34  
Central lymph node metastasis No 30 28 18 40 0.025
  Yes 58 47 15 34  
Lateral lymph node metastasis No 64 58 31 69 0.001
  Yes 24 17 2 5  
Locoregional recurrence No 79 60 32 62 0.072
  Yes 9 15 1 12  

means p value <0.05

TOOLS
Similar articles