Abstract
This study investigated the effects of ombuoside, a flavonol glycoside, on dopamine biosynthesis in PC12 cells. Ombuoside at concentrations of 1, 5, and 10 µM increased intracellular dopamine levels at 1 – 24 h. Ombuoside (1, 5, and 10 µM) also significantly increased the phosphorylation of tyrosine hydroxylase (TH) (Ser40) and cyclic AMP-response element binding protein (CREB) (Ser133) at 0.5 – 6 h. In addition, ombuoside (1, 5, and 10 µM) combined with L-DOPA (20, 100, and 200 µM) further increased intracellular dopamine levels for 24 h compared to L-DOPA alone. These results suggest that ombuoside regulates dopamine biosynthesis by modulating TH and CREB activation in PC12 cells.
References
(1). Fahn S.Ann. NY Acad. Sci. 2003. 991:1–14.
(2). Nagatsu T.., Levitt M.., Udenfriend S. J.Biol. Chem. 1964. 239:2910–2917.
(3). Kilbourne E. J.., Nankova B. B.., Lewis E. J.., McMahon A.., Osaka H.., Sabban D. B.., Sabban E. L. J.Biol. Chem. 1992. 267:7563–7569.
(4). Kim K. S.., Lee M. K.., Carroll J.., Joh T. H. J.Biol. Chem. 1993. 268:15689–15695.
(5). Campbell D. G.., Hardie D. G.., Vulliet P. R. J.Biol. Chem. 1986. 261:10489–10492.
(6). Haycock J. W.Neurochem. Res. 1993. 18:15–26.
(7). Kim K. S.., Park D. H.., Wessel T. C.., Song B.., Wagner J. A.., Joh T. H.Proc. Natl. Acad. Sci. USA. 1993. 90:3471–3475.
(8). Marsden C. D.., Parkes J. D.Lancet. 1977. 1:345–349.
(9). Migheli R.., Godani C.., Sciola L.., Delogu M. R.., Serra P. A.., Zangani D.., De Natale G.., Miele E.., Desole M. S. J.Neurochem. 1999. 73:1155–1163.
(10). Jin C. M.., Yang Y. J.., Huang H. S.., Lim S. C.., Kai M.., Lee M. K.Eur. J. Pharmacol. 2008. 591:88–95.
(11). Razmovski-Naumovski V.., Huang T. H. W.., Tran V. H.., Li G. Q.., Duke C. C.., Roufogalis B. D.Phytochem. Rev. 2005. 14:197–219.
(12). Choi H. S.., Zhao T. T.., Shin K. S.., Kim S. H.., Hwang B. Y.., Lee C. K.., Lee M. K.Molecules. 2013. 18:4342–4356.
(13). Choi H. S.., Park M. S.., Kim S. H.., Hwang B. Y.., Lee C. K.., Lee M. K.Molecules. 2010. 15:2814–2824.
(14). Shin K. S.., Zhao T. T.., Park K. H.., Park H. J.., Hwang B. Y.., Lee C. K.., Lee M. K.BMC Neurosci. 2015. 16:23.
(15). Shin K. S.., Zhao T. T.., Choi H. S.., Hwang B. Y.., Lee C. K.., Lee M. K.Brain Res. 2014. 1567:57–65.
(16). Rice-Evans C. A.., Miller N. J.., Paganga G.Free Radic. Biol. Med. 1996. 20:933–956.
(17). Amaro-Luis J. M.., Adrián M.., Díaz C.Ann. Pharm. Fr. 1997. 55:262–268.
(18). Pollard S. E.., Kuhnle G. G.., Vauzour D.., Vafeiadou K.., Tzounis X.., Whiteman M.., Rice-Evans C.., Spencer J. P.Biochem. Biophys. Res. Commun. 2006. 350:960–968.
(19). Kumar S.., Pandey A. K.Scientific World Journal. 2013. 2013:162750.
(20). Tischler A. S.., Perlman R. L.., Morse G. M.., Sheard B. E. J.Neurochem. 1983. 40:364–370.
(21). Mosmann T. J.Immunol. Methods. 1983. 65:55–63.
(22). Lowry O. H.., Rosebrough N. J.., Farr A. L.., Randall R. L. J.Biol. Chem. 1951. 193:265–275.
(23). Gonzalez G. A.., Montminy M. R.Cell. 1989. 59:675–680.
(24). Basma A. N.., Morris E. J.., Nicklas W. J.., Geller H. M. J.Neurochem. 1995. 64:825–832.