Journal List > Nat Prod Sci > v.24(2) > 1109103

Khaw, Murugaiyah, Khairuddean, and Tan: Garcinexanthone G, a Selective Butyrylcholinesterase Inhibitor from the Stem Bark of Garcinia atroviridis

Abstract

The present study was undertaken to investigate the isolated compounds from the stem bark of Garcinia atroviridis as potential cholinesterase inhibitors and the ligand-enzyme interactions of selected bioactive compounds in silico. The in vitro cholinesterase results showed that quercetin (3) was the most active AChE inhibitor (12.65 ± 1.57 µg/ml) while garcinexanthone G (6) was the most active BChE inhibitor (18.86 ± 2.41 µg/ ml). It is noteworthy to note that compound 6 was a selective inhibitor with the selectivity index of 11.82. Molecular insight from docking interaction further substantiate that orientation of compound 6 in the catalytic site which enhanced its binding affinity as compared to other xanthones. The nature of protein-ligand interactions of compound 6 is mainly hydrogen bonding, and the hydroxyl group of compound 6 at C-10 is vital in BChE inhibition activity. Therefore, compound 6 is a notable lead for further drug design and development of BChE selective inhibitor.

References

(1). Tarawneh R.., Holtzman D. M.Cold Spring Harb. Perspect. Med. 2012. 2:, a006148.
(2). Prince M.., Comas-Herrera A.., Knapp M.., Guerchet M.., Karagiannidou M.World Alzheimer Report. 2016.
(3). Herrup K.Nat. Neurosci. 2015. 18:794–799.
(4). Aguzzi A.., O'Connor T.Nat. Rev. Drug Discov. 2010. 9:237–248.
(5). Hardy J.., Selkoe D. J.Science. 2002. 297:353–356.
(6). Colovi M. B.., Krsti D. Z.., Lazarevi -Pašti T. D.., Bondži A. có có có có M.., Vasi V. M.Curr. Neuropharmacol. 2013. 11:315–335.
(7). Scarpini E.., Schelterns P.., Feldman H.Lancet Neurol. 2003. 2:539–547.
(8). Darvesh S.., Grantham D. L.., Hopkins D. A. J.Comp. Neurol. 1998. 393:374–390.
(9). Perry E. K.., Perry R. H.., Blessed G.., Tomlinson B. E.Neuropathol. Appl. Neurobiol. 1978. 4:273–277.
(10). Quinn D. M.Chem. Rev. 1987. 87:955–979.
crossref
(11). Sussman J. L.., Harel M.., Frolow F.., Oefner C.., Goldman A.., Toker L.., Silman I.Science. 1991. 253:872–879.
(12). Greig N. H.., Utsuki T.., Ingram D. K.., Wang Y.., Pepeu G.., Scali C.., Yu Q. S.., Mamczarz J.., Holloway H. W.., Giordano T.., Chen D.., Furukawa K.., Sambamurti K.., Brossi A.., Lahiri D. K. Proc. Natl. Acad. Sci. U. S.A. 2005. 102:17213–17218.
(13). Tan W. N.., Khairuddean M.., Wong K. C.., Khaw K. Y.., Vikneswaran M.Fitoterapia. 2014. 97:261–267.
(14). Tan W. N.., Khairuddean M.., Wong K. C.., Tong W. Y.., Ibrahim D. J.Asian Nat. Prod. Res. 2016. 18:804–811.
(15). Ellman G. L.., Courtney K. D.., Andres V. Jr.., Feather-Stone R. M.Biochem. Pharmacol. 1961. 7:88–95.
(16). Morris G. M.., Goodsell D. S.., Halliday R. S.., Huey R.., Hart W. E.., Belew R. K.., Olson A. J. J.Comput. Chem. 1998. 19:1639–1662.
(17). Carletti E.., Aurbek N.., Gillon E.., Loiodice M.., Nicolet Y.., Fontecilla-Camps J. -C.., Masson P.., Thiermann H.., Nachon F.., Worek F.Biochem. J. 2009. 421:97–106.
(18). Humphrey W.., Dalke A.., Schulten K. J.Mol. Graph. 1996. 14:33–38.
(19). Khaw K. Y.., Choi S. B.., Tan S. C.., Wahab H. A.., Chan K. L.., Murugaiyah V.Phytomedicine. 2014. 21:1303–1309.
(20). Louh G. N.., Lannang A. M.., Mbazoa C. D.., Tangmouo J. G.., Komguem J.., Castilho P.., Ngninzeko F. N.., Qamar N.., Lontsi D.., Choudhary M. I.., Sondengam B. L.Phytochemistry. 2008. 69:1013–1017.
(21). Khan M. T. H.., Orhan I.., Senol F. S.., Kartal M.., Sener B.., Dvorská M.., Smejkal K.., Slapetová T.Chem. Biol. Interact. 2009. 181:383–389.
(22). Sriraksa N.., Wattanathorn J.., Muchimapura S.., Tiamkao S.., Brown K.., Chaisiwamongkol K.Evid. Based Complement. Alternat. Med. 2012. 2012:823206.

Fig. 1.
The structures of compounds 1 – 6 from the stem bark of G. atroviridis.
nps-24-88f1.tif
Fig. 2.
Binding interactions of compounds 4 – 6 and galanthamine with the amino acids of butyrylcholinesterase. A-D represents compounds 4 – 6 and galanthamine, respectively.
nps-24-88f2.tif
Table 1.
Cholinesterase inhibitory activities of compounds 1 – 6 from the stem bark of G. atroviridis
Compounds AChE BChE Selectivity Index
Inhibition at 100 µg/ml IC50 (µg/ml) Inhibition at 100 µg/ml IC50 (µg/ml) AChE BChE
1 61.35 ± 1.99 69.04 ± 6.15 55.00 ± 4.08 96.00 ± 0.25 51.39 50.72
2 68.93 ± 1.16 42.85 ± 3.60 40.02 ± 3.75 84.15 ± 5.23 51.96 50.51
3 54.75 ± 3.07 12.65 ± 1.57 25.25 ± 2.87 ND
4 55.10 ± 1.47 ND 16.04 ± 2.66 ND
5 59.49 ± 1.71 ND 64.06 ± 8.13 205.95 ± 10.15
6 42.28 ± 0.45 223.00 ± 18.27 93.30 ± 1.30 18.86 ± 2.41 50.08 11.82
Physostigmine 550.05 ± 0.007 50.14 ± 0.02 52.80 50.36
Galanthamine 50.27 ± 0.07 55.55 ± 0.02 20.56 50.05

Note: Data are presented as mean ± SD (n = 3)

Selectivity for AChE is defined as IC50 (BChE) / IC50 (AChE)

Selectivity for BChE is defined as IC50 (AChE) / IC50(BChE)

ND = Not determined

Table 2.
Binding interactions of compounds 4 – 6 with BChE
Ligands Binding energy (kcal) Inhibition constant (Ki) Residue Type of interaction Interacting site Distance (Å)
      Trp 82 Hydrophobic   4.46
4 –8.37 7.33 Gln 67 H-bond CBS 2.64
      Tyr 128 H-bond   2.09
      Trp 82 Hydrophobic   5.07
5 –8.49 6.0 Tyr 128 H-bond H-bond CBS 2.74 2.14
      Tyr 70 H-bond   2.05
      Ser 198 H-bond   2.83
6 –8.93 2.85 His 438 H-bond CT 1.70
      Pro 285 H-bond   3.12
Galanthamine e −10.11 3.85 Trp 82 Tyr 128 Hydrophobic H-bond CBS 3.39 2.97

Note: CBS = Choline binding site

CT = Catalytic site

TOOLS
Similar articles