Journal List > Nat Prod Sci > v.24(2) > 1109095

Liu, Jo, Ahn, Kim, Paek, Hwang, Park, and Lee: Optimization of Extraction Condition of Methyl Jasmonate-treated Wild Ginseng Adventitious Root Cultures using Response Surface Methodology

Abstract

The usage of wild ginseng (Panax ginseng C.A. Meyer) has been limited due to short supply and high price. Therefore, sufficient production as well as efficient extraction of mountain ginseng are required for the development as products. In this study, wild ginseng adventitious root cultures were prepared for efficient production with advantages of fast growth and stable production. Treatment of methyl jasmonate (MJ) to wild ginseng adventitious root cultures increased the extraction yield and antioxidative activity. Further investigation on effect of extraction conditions suggested the importance of ethanol concentration on antioxidative activity and extraction yield of MJ-treated wild ginseng adventitious root cultures. Optimized extraction condition of MJ-treated wild ginseng adventitious root cultures for maximum extraction yield and antioxidative activity was determined using response surface methodology with three-level-three-factor Box-Behnken design (BBD). Extraction of 1 g MJ-treated wild ginseng adventitious root culture with 30 ml of 9% ethanol at 30oC produced 310.2 mg extract with 71.0% antioxidative activity at 100 µg/ml. Taken together, MJ-treated wild ginseng adventitious root culture is valuable source for wild ginseng usage and optimized extraction condition can be used for the development of functional products or folk remedies.

References

(1). Chung I. M.., Lim J. J.., Ahn M. S.., Jeong H. N.., An T. J.., Kim S. H. J.Ginseng Res. 2016. 40:68–75.
(2). He J. M.., Zhang Y. Z.., Luo J. P.., Zhang W. J.., Mu Q.Nat. Prod. Commun. 2016. 11:739–740.
(3). Herzi N.., Bouajila J.., Camy S.., Romdhane M.., Condoret J. S.Food Chem. 2013. 141:3537–3545.
(4). Hu F. X.., Zhong J. J. J.Biosci. Bioeng. 2007. 104:513–516.
(5). Jeong G. T.., Park D. H.., Ryu H. W.., Hwang B.., Woo J. C.., Kim D.., Kim S. W.Appl. Biochem. Biotechnol. 2005. 124:1147–1157.
(6). Jeong J.Y.., Jo Y. H.., Lee K. Y.., Do S. G.., Hwang B. Y.., Lee M. K.Bioorg. Med. Chem. Lett. 2014. 24:2329–2333.
(7). Kim O. T.., Bang K. H.., Shin Y. S.., Lee M. J.., Jung S. J.., Hyun D. Y.., Kim Y. C.., Seong N. S.., Cha S. W.., Hwang B.Plant Cell Rep. 2007. 26:1941–1949.
(8). Murthy H. N.., Georgiev M. I.., Kim Y. S.., Jeong C. S.., Kim S. J.., Park S. Y.., Paek K. Y.Appl. Microbiol. Biotechnol. 2014. 98:6243–6254.
(9). Pan H. Y.., Qu Y.., Zhang J. K.., Kang T. G.., Dou D. Q. J.Ginseng Res. 2013. 37:355–360.
(10). Park J. G.., Son Y. J.., Aravinthan A.., Kim J. H.., Cho J. Y. J.Ginseng Res. 2016. 40:431–436.
(11). Patel S.., Rauf A.Biomed. Pharmacother. 2017. 85:120–127.
(12). Rahimi S.., Kim Y. J.., Yang D. C.Appl. Microbiol. Biotechnol. 2015. 99:6987–6996.
(13). Ru W.., Wang D.., Xu Y.., He X.., Sun Y. E.., Qian L.., Zhou X.., Qin Y.Drug Discov. Ther. 2015. 9:23–32.
(14). Ruffoni B.., Pistelli L.., Bertoli A.., Pistelli L.Adv. Exp. Med. Biol. 2010. 698:203–221.
(15). Sun H.., Liu F.., Sun L.., Liu J.., Wang M.., Chen X.., Xu X.., Ma R.., Feng K.., Jiang R. J.Ginseng Res. 2016. 40:113–120.
(16). Im D.S.., Nah S.Y.Acta Pharmacol. Sin. 2013. 34:1367–1373.
(17). Wang T.., Guo R.., Zhou G.., Zhou X.., Kou Z.., Sui F.., Li C.., Tang L.., Wang Z. J.Ethnopharmacol. 2016. 188:234–258.
(18). Yu K. W.., Gao W. Y.., Son S. H.., Paek K. Y.In Vitro Cell. Dev. Biol. Plant. 2000. 36:424–428.

Fig. 1.
HPLC chromatograms of MJ-untreated and MJ treated wild ginseng adventitious root cultures.
nps-24-103f1.tif
Fig. 2.
Response surface plots of extraction variables on [A] antioxidant activity and [B] extraction yield of wild ginseng adventitious root cultures.
nps-24-103f2.tif
Table 1.
A Box-Behnken design for extraction factors on antioxidant activity and extraction yield of wild ginseng adventitious root cultures
Run Actual variables Observed values
Ethanol concentration (%) Extraction Temperature (ºC) Solvent/sample ratio Antioxidant activitya (%) Yield (mg extract/g sample)
1 100 50 20 53.6 48.2
2 100 30 20 51.8 31.5
3 50 50 30 65.5 317.4
4 50 30 30 65.4 297.6
5 100 40 30 54.5 40.5
6 50 40 20 60.1 253.7
7 0 50 20 65.0 219.4
8 50 40 20 58.0 250.8
9 50 30 10 60.8 199.8
10 0 30 20 69.6 246.0
11 50 50 10 62.0 213.8
12 0 40 30 67.3 247.3
13 100 40 10 52.3 29.6
14 0 40 10 68.2 85.1
15 50 40 20 58.9 247.2

a Antioxidant activity (%) was measured at 100 µg/mL.

Table 2.
Regression coefficients and their significances in the second-order polynomial regression equation for antioxidant activity and extraction yield
  Coefficient Standard error t value p value
[Antioxidant activity]        
Intercept 59.000 0.822 71.786 <0.001
X1 –7.238 0.503 –14.380 <0.001
X2 –0.188 0.503 –0.373 0.725
X3 1.175 0.503 2.335 0.067
3 X12 –0.925 0.741 –1.249 0.267
1 X22 1.925 0.741 2.598 0.048
2 X32 2.500 0.741 3.375 0.020
X1X2 1.600 0.712 2.248 0.074
X1X3 0.775 0.712 1.089 0.326
X2X3 –0.275 0.712 –0.386 0.715
[Extraction yield]        
Intercept 250.567 12.284 20.398 <0.001
X1 –81.000 7.522 –10.768 <0.001
X2 2.988 7.522 0.397 0.708
X3 46.813 7.522 6.223 0.002
3 X12 –135.408 11.073 –12.229 <0.001
1 X22 21.117 11.073 1.907 0.115
2 X32 –14.533 11.073 –1.313 0.247
X1X2 10.825 10.638 1.018 0.357
X1X3 –37.825 10.638 –3.556 0.016
X2X3 1.450 10.638 0.136 0.897
Table 3.
Predicted and observed values of antioxidant and extraction yield under differential optimized condition
Extraction condition Predicted Observed
Ethanol concentration (%) Extraction temperature (ºC) Solvent/sample ratio Antioxidant activity Extraction yield Antioxidant activity Extraction yield
[Optimized for maximum antioxidant activity]          
0.0 30.0 30.0 72.2 74.1 288.2
[Optimized for maximum extraction yield]          
26.1 30.0 30.0 330.5 71.6 323.4
[Optimized for maximum activity and extraction yield]        
9.2 30.0 30.0 71.0 315.0 72.6 310.2
TOOLS
Similar articles