1. Slama K. Global perspective on tobacco control. Part I. The global state of the tobacco epidemic. Int J Tuberc Lung Dis. 2008; 12:3–7.
2. Gallart-Mateu D, Elbal L, Armenta S, de la Guardia M. Passive exposure to nicotine from e-cigarettes. Talanta. 2016; 152:329–334.
3. Jarvis MJ, Feyerabend C, Bryant A, Hedges B, Primatesta P. Passive smoking in the home: plasma cotinine concentrations in non-smokers with smoking partners. Tob Control. 2001; 10:368–374.
4. Office on Smoking and Health (US). The Health Consequences of Involuntary Exposure to Tobacco Smoke: a Report of the Surgeon General. Atlanta, GA: Centers for Disease Control and Prevention;2006.
5. Schick S, Glantz S. Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke. Tob Control. 2005; 14:396–404.
6. World Health Organization (CH). Global Tuberculosis Report 2014. Geneva: World Health Organization;2014.
7. Pai M, Mohan A, Dheda K, Leung CC, Yew WW, Christopher DJ, Sharma SK. Lethal interaction: the colliding epidemics of tobacco and tuberculosis. Expert Rev Anti Infect Ther. 2007; 5:385–391.
8. Basu S, Stuckler D, Bitton A, Glantz SA. Projected effects of tobacco smoking on worldwide tuberculosis control: mathematical modelling analysis. BMJ. 2011; 343:d5506.
9. van Zyl-Smit R, Dheda K. Partners in crime: the deadly synergy of tuberculosis and tobacco smoke? Mycobact Dis. 2012; 2:e111.
10. U.S. Department of Health and Human Services. The Health Consequences of Involuntary Smoking: a Report of the Surgeon General. Washington, D.C.: U.S. Department of Health and Human Services;1986. p. 1–363.
11. Strulovici-Barel Y, Omberg L, O'Mahony M, Gordon C, Hollmann C, Tilley AE, Salit J, Mezey J, Harvey BG, Crystal RG. Threshold of biologic responses of the small airway epithelium to low levels of tobacco smoke. Am J Respir Crit Care Med. 2010; 182:1524–1532.
12. Bishwakarma R, Kinney WH, Honda JR, Mya J, Strand MJ, Gangavelli A, Bai X, Ordway DJ, Iseman MD, Chan ED. Epidemiologic link between tuberculosis and cigarette/biomass smoke exposure: limitations despite the vast literature. Respirology. 2015; 20:556–568.
13. den Boon S, Verver S, Marais BJ, Enarson DA, Lombard CJ, Bateman ED, Irusen E, Jithoo A, Gie RP, Borgdorff MW, et al. Association between passive smoking and infection with
Mycobacterium tuberculosis in children. Pediatrics. 2007; 119:734–739.
14. du Preez K, Mandalakas AM, Kirchner HL, Grewal HM, Schaaf HS, van Wyk SS, Hesseling AC. Environmental tobacco smoke exposure increases
Mycobacterium tuberculosis infection risk in children. Int J Tuberc Lung Dis. 2011; 15:1490–1496. i
15. Godoy P, Caylà JA, Carmona G, Camps N, Álvarez J, Alsedà M, Minguell S, Rodés A, Altet N, Pina JM, et al. Smoking in tuberculosis patients increases the risk of infection in their contacts. Int J Tuberc Lung Dis. 2013; 17:771–776.
16. Kuemmerer JM, Comstock GW. Sociologic concomitants of tuberculin sensitivity. Am Rev Respir Dis. 1967; 96:885–892.
17. Singh M, Mynak ML, Kumar L, Mathew JL, Jindal SK. Prevalence and risk factors for transmission of infection among children in household contact with adults having pulmonary tuberculosis. Arch Dis Child. 2005; 90:624–628.
18. Patra J, Bhatia M, Suraweera W, Morris SK, Patra C, Gupta PC, Jha P. Exposure to second-hand smoke and the risk of tuberculosis in children and adults: a systematic review and meta-analysis of 18 observational studies. PLoS Med. 2015; 12:e1001835.
19. Dogar OF, Pillai N, Safdar N, Shah SK, Zahid R, Siddiqi K. Second-hand smoke and the risk of tuberculosis: a systematic review and a meta-analysis. Epidemiol Infect. 2015; 143:3158–3172.
20. Iseman MD. A Clinician's Guide to Tuberculosis. Philadelphia, PA: Lippincott Williams & Wilkins;2000. p. 253–269.
21. Altet MN, Alcaide J, Plans P, Taberner JL, Saltó E, Folguera LI, Salleras L. Passive smoking and risk of pulmonary tuberculosis in children immediately following infection. A case-control study. Tuber Lung Dis. 1996; 77:537–544.
22. Patra S, Sharma S, Behera D. Passive smoking, indoor air pollution and childhood tuberculosis: a case control study. Indian J Tuberc. 2012; 59:151–155.
23. Ramachandran R, Indu PS, Anish TS, Nair S, Lawrence T, Rajasi RS. Determinants of childhood tuberculosis--a case control study among children registered under revised National Tuberculosis Control Programme in a district of South India. Indian J Tuberc. 2011; 58:204–207.
24. Tipayamongkholgul M, Podhipak A, Chearskul S, Sunakorn P. Factors associated with the development of tuberculosis in BCG immunized children. Southeast Asian J Trop Med Public Health. 2005; 36:145–150.
25. Alcaide J, Altet MN, Plans P, Parrón I, Folguera L, Saltó E, Domínguez A, Pardell H, Salleras L. Cigarette smoking as a risk factor for tuberculosis in young adults: a case-control study. Tuber Lung Dis. 1996; 77:112–116.
26. Ariyothai N, Podhipak A, Akarasewi P, Tornee S, Smithtikarn S, Thongprathum P. Cigarette smoking and its relation to pulmonary tuberculosis in adults. Southeast Asian J Trop Med Public Health. 2004; 35:219–227.
27. Pokhrel AK, Bates MN, Verma SC, Joshi HS, Sreeramareddy CT, Smith KR. Tuberculosis and indoor biomass and kerosene use in Nepal: a case-control study. Environ Health Perspect. 2010; 118:558–564.
28. Woldesemayat EM, Datiko DG, Lindtjørn B. Use of biomass fuel in households is not a risk factor for pulmonary tuberculosis in South Ethiopia. Int J Tuberc Lung Dis. 2014; 18:67–72.
29. Leung CC, Lam TH, Ho KS, Yew WW, Tam CM, Chan WM, Law WS, Chan CK, Chang KC, Au KF. Passive smoking and tuberculosis. Arch Intern Med. 2010; 170:287–292.
30. Crampin AC, Glynn JR, Floyd S, Malema SS, Mwinuka VK, Ngwira BM, Mwaungulu FD, Warndorff DK, Fine PE. Tuberculosis and gender: exploring the patterns in a case control study in Malawi. Int J Tuberc Lung Dis. 2004; 8:194–203.
31. Gajalakshmi V, Peto R, Kanaka TS, Jha P. Smoking and mortality from tuberculosis and other diseases in India: retrospective study of 43000 adult male deaths and 35000 controls. Lancet. 2003; 362:507–515.
32. Kolappan C, Gopi PG. Tobacco smoking and pulmonary tuberculosis. Thorax. 2002; 57:964–966.
33. Leung CC, Li T, Lam TH, Yew WW, Law WS, Tam CM, Chan WM, Chan CK, Ho KS, Chang KC. Smoking and tuberculosis among the elderly in Hong Kong. Am J Respir Crit Care Med. 2004; 170:1027–1033.
34. Leung CC, Yew WW, Law WS, Tam CM, Leung M, Chung YW, Cheung KW, Chan KW, Fu F. Smoking and tuberculosis among silicotic patients. Eur Respir J. 2007; 29:745–750.
35. Lin HH, Ezzati M, Chang HY, Murray M. Association between tobacco smoking and active tuberculosis in Taiwan: prospective cohort study. Am J Respir Crit Care Med. 2009; 180:475–480.
36. Singh PN, Yel D, Kheam T, Hurd G, Job JS. Cigarette smoking and tuberculosis in Cambodia: findings from a national sample. Tob Induc Dis. 2013; 11:8.
37. Yen YF, Yen MY, Lin YS, Lin YP, Shih HC, Li LH, Chou P, Deng CY. Smoking increases risk of recurrence after successful anti-tuberculosis treatment: a population-based study. Int J Tuberc Lung Dis. 2014; 18:492–498.
38. Feng Y, Kong Y, Barnes PF, Huang FF, Klucar P, Wang X, Samten B, Sengupta M, Machona B, Donis R, et al. Exposure to cigarette smoke inhibits the pulmonary T-cell response to influenza virus and
Mycobacterium tuberculosis
. Infect Immun. 2011; 79:229–237.
39. Shaler CR, Horvath CN, McCormick S, Jeyanathan M, Khera A, Zganiacz A, Kasinska J, Stampfli MR, Xing Z. Continuous and discontinuous cigarette smoke exposure differentially affects protective Th1 immunity against pulmonary tuberculosis. PLoS One. 2013; 8:e59185.
40. Shang S, Ordway D, Henao-Tamayo M, Bai X, Oberley-Deegan R, Shanley C, Orme IM, Case S, Minor M, Ackart D, et al. Cigarette smoke increases susceptibility to tuberculosis--evidence from
in vivo and
in vitro models. J Infect Dis. 2011; 203:1240–1248.
41. Kuschner WG, D'Alessandro A, Wong H, Blanc PD. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J. 1996; 9:1989–1994.
42. Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, Smith KR. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med. 2007; 167:335–342.
43. Lin HH, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007; 4:e20.
44. Slama K, Chiang CY, Enarson DA, Hassmiller K, Fanning A, Gupta P, Ray C. Tobacco and tuberculosis: a qualitative systematic review and meta-analysis. Int J Tuberc Lung Dis. 2007; 11:1049–1061.
45. van Zyl-Smit RN, Binder A, Meldau R, Semple PL, Evans A, Smith P, Bateman ED, Dheda K. Cigarette smoke impairs cytokine responses and BCG containment in alveolar macrophages. Thorax. 2014; 69:363–370.
46. Ottenhoff TH, Lewinsohn DA, Lewinsohn DM. Human CD4 and CD8 T cell responses to Mycobacterium tuberculosis: antigen specificity, function, implications and applications. In : Kaufmann SH, Britton WJ, editors. Handbook of Tuberculosis: Immunology and Cell Biology. Weinheim: Wiley-Blackwell;2008. p. 119–155.
47. Lee DH, Ghiasi H. Roles of M1 and M2 macrophages in herpes simplex virus 1 infectivity. J Virol. 2017; 91:e00578–e00517.
48. Mills CD, Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun. 2014; 6:716–726.
49. Bai X, Feldman NE, Chmura K, Ovrutsky AR, Su WL, Griffin L, Pyeon D, McGibney MT, Strand MJ, Numata M, et al. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages. PLoS One. 2013; 8:e61925.
50. Schlesinger LS, Azad AK, Torrelles JB, Roberts E, Vergne I, Deretic V. Determinants of phagocytosis, phagosome biogenesis and autophagy for Mycobacterium tuberculosis. In : Kaufmann SH, Britton WJ, editors. Handbook of Tuberculosis: Immunology and Cell Biology. Weinheim: Wiley-Blackwell;2008. p. 1–22.
51. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009; 27:451–483.
52. Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O'Connor TP, Crystal RG. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol. 2009; 183:2867–2883.
53. Persson YA, Blomgran-Julinder R, Rahman S, Zheng L, Stendahl O.
Mycobacterium tuberculosis-induced apoptotic neutrophils trigger a pro-inflammatory response in macrophages through release of heat shock protein 72, acting in synergy with the bacteria. Microbes Infect. 2008; 10:233–240.
54. Jena P, Mohanty S, Mohanty T, Kallert S, Morgelin M, Lindstrøm T, Borregaard N, Stenger S, Sonawane A, Sørensen OE. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One. 2012; 7:e50345.
55. Minematsu N, Blumental-Perry A, Shapiro SD. Cigarette smoke inhibits engulfment of apoptotic cells by macrophages through inhibition of actin rearrangement. Am J Respir Cell Mol Biol. 2011; 44:474–482.
56. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010; 236:219–242.
57. Robays LJ, Lanckacker EA, Moerloose KB, Maes T, Bracke KR, Brusselle GG, Joos GF, Vermaelen KY. Concomitant inhalation of cigarette smoke and aerosolized protein activates airway dendritic cells and induces allergic airway inflammation in a TLR-independent way. J Immunol. 2009; 183:2758–2766.
58. Yanagita M, Kobayashi R, Kojima Y, Mori K, Murakami S. Nicotine modulates the immunological function of dendritic cells through peroxisome proliferator-activated receptor-γ upregulation. Cell Immunol. 2012; 274:26–33.
59. Sköld CM, Lundahl J, Halldén G, Hallgren M, Eklund A. Chronic smoke exposure alters the phenotype pattern and the metabolic response in human alveolar macrophages. Clin Exp Immunol. 1996; 106:108–113.
60. Ando M, Sugimoto M, Nishi R, Suga M, Horio S, Kohrogi H, Shimazu K, Araki S. Surface morphology and function of human pulmonary alveolar macrophages from smokers and non-smokers. Thorax. 1984; 39:850–856.
61. Berenson CS, Garlipp MA, Grove LJ, Maloney J, Sethi S. Impaired phagocytosis of nontypeable
Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis. 2006; 194:1375–1384.
62. Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007; 37:748–755.
63. Subramaniam R, Mukherjee S, Chen H, Keshava S, Neuenschwander P, Shams H. Restoring cigarette smoke-induced impairment of efferocytosis in alveolar macrophages. Mucosal Immunol. 2016; 9:873–883.
64. Harris JO, Gonzalez-Rothi RJ. Abnormal phagolysosome fusion in pulmonary alveolar macrophages of rats exposed chronically to cigarette smoke. Am Rev Respir Dis. 1984; 130:467–471.
65. Oberley-Deegan RE, Lee YM, Morey GE, Cook DM, Chan ED, Crapo JD. The antioxidant mimetic, MnTE-2-PyP, reduces intracellular growth of
Mycobacterium abscessus
. Am J Respir Cell Mol Biol. 2009; 41:170–178.
66. Oberley-Deegan RE, Rebits BW, Weaver MR, Tollefson AK, Bai X, McGibney M, Ovrutsky AR, Chan ED, Crapo JD. An oxidative environment promotes growth of Mycobacterium abscessus
. Free Radic Biol Med. 2010; 49:1666–1673.
67. Monick MM, Powers LS, Walters K, Lovan N, Zhang M, Gerke A, Hansdottir S, Hunninghake GW. Identification of an autophagy defect in smokers' alveolar macrophages. J Immunol. 2010; 185:5425–5435.
68. Bai X, Stitzel JA, Bai A, Zambrano CA, Phillips M, Marrack P, Chan ED. Nicotine impairs macrophage control of
Mycobacterium tuberculosis. Am J Respir Cell Mol Biol. 2017; 57:324–333.
69. Kojima J, Araya J, Hara H, Ito S, Takasaka N, Kobayashi K, Fujii S, Tsurushige C, Numata T, Ishikawa T, et al. Apoptosis inhibitor of macrophage (AIM) expression in alveolar macrophages in COPD. Respir Res. 2013; 14:30.
70. Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002; 2:372–377.
71. Blidberg K, Palmberg L, Dahlén B, Lantz AS, Larsson K. Increased neutrophil migration in smokers with or without chronic obstructive pulmonary disease. Respirology. 2012; 17:854–860.
72. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via LE, Barry CE 3rd. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest. 2010; 137:122–128.
73. Corleis B, Korbel D, Wilson R, Bylund J, Chee R, Schaible UE. Escape of
Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Microbiol. 2012; 14:1109–1121.
74. Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO, Apt AS. Neutrophil responses to
Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun. 2005; 73:1744–1753.
75. Lowe DM, Redford PS, Wilkinson RJ, O'Garra A, Martineau AR. Neutrophils in tuberculosis: friend or foe? Trends Immunol. 2012; 33:14–25.
76. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012; 122:327–336.
77. Harrison OJ, Foley J, Bolognese BJ, Long E 3rd, Podolin PL, Walsh PT. Airway infiltration of CD4
+ CCR6
+ Th17 type cells associated with chronic cigarette smoke induced airspace enlargement. Immunol Lett. 2008; 121:13–21.
78. McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA, Wilkinson RJ, Kon OM, Banchereau J, Chaussabel D, et al. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol. 2011; 41:1941–1947.
79. Dunn JS, Freed BM, Gustafson DL, Stringer KA. Inhibition of human neutrophil reactive oxygen species production and p67phox translocation by cigarette smoke extract. Atherosclerosis. 2005; 179:261–267.
80. Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009; 30:513–521.
81. Herrera MT, Torres M, Nevels D, Perez-Redondo CN, Ellner JJ, Sada E, Schwander SK. Compartmentalized bronchoalveolar IFN-γ and IL-12 response in human pulmonary tuberculosis. Tuberculosis (Edinb). 2009; 89:38–47.
82. Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M, Cazzadori A, Trinchieri G. CD4
+ T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol. 1999; 92:224–234.
83. Lienhardt C, Azzurri A, Amedei A, Fielding K, Sillah J, Sow OY, Bah B, Benagiano M, Diallo A, Manetti R, et al. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity
in vivo
. Eur J Immunol. 2002; 32:1605–1613.
84. Sharma SK, Mitra DK, Balamurugan A, Pandey RM, Mehra NK. Cytokine polarization in miliary and pleural tuberculosis. J Clin Immunol. 2002; 22:345–352.
85. Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis. 2002; 61:Suppl 2. ii54–ii58.
86. Munk ME, Emoto M. Functions of T-cell subsets and cytokines in mycobacterial infections. Eur Respir J Suppl. 1995; 20:668s–675s.
87. Newcomb DC, Zhou W, Moore ML, Goleniewska K, Hershey GK, Kolls JK, Peebles RS Jr. A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol. 2009; 182:5317–5321.
88. Rook GA, Hernandez-Pando R, Dheda K, Teng Seah G. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol. 2004; 25:483–488.
89. Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010; 21:455–462.
90. Sable SB. Programmed death 1 lives up to its reputation in active tuberculosis. J Infect Dis. 2013; 208:541–543.
91. Singh A, Dey AB, Mohan A, Sharma PK, Mitra DK. Foxp3+ regulatory T cells among tuberculosis patients: impact on prognosis and restoration of antigen specific IFN-γ producing T cells. PLoS One. 2012; 7:e44728.
92. Singh A, Mohan A, Dey AB, Mitra DK. Inhibiting the programmed death 1 pathway rescues
Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis. 2013; 208:603–615.
93. Jiang J, Wang X, An H, Yang B, Cao Z, Liu Y, Su J, Zhai F, Wang R, Zhang G, et al. Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis. Am J Respir Crit Care Med. 2014; 190:329–339.
94. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol. 2011; 186:1598–1607.
95. Lázár-Molnár E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, Porcelli SA, Almo SC, Nathenson SG, Jacobs WR Jr. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A. 2010; 107:13402–13407.
96. Tousif S, Singh Y, Prasad DV, Sharma P, Van Kaer L, Das G. T cells from programmed death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS One. 2011; 6:e19864.
97. Lin PL, Flynn JL. CD8 T cells and
Mycobacterium tuberculosis infection. Semin Immunopathol. 2015; 37:239–249.
98. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997; 276:1684–1687.
99. Lamb JR, Rees AD, Bal V, Ikeda H, Wilkinson D, De Vries RR, Rothbard JB. Prediction and identification of an HLA-DR-restricted T cell determinant in the 19-kDa protein of
Mycobacterium tuberculosis
. Eur J Immunol. 1988; 18:973–976.
100. Woodworth JS, Behar SM.
Mycobacterium tuberculosis-specific CD8
+ T cells and their role in immunity. Crit Rev Immunol. 2006; 26:317–352.
101. Woodworth JS, Wu Y, Behar SM.
Mycobacterium tuberculosis-specific CD8
+ T cells require perforin to kill target cells and provide protection
in vivo
. J Immunol. 2008; 181:8595–8603.
102. Randhawa PS. Lymphocyte subsets in granulomas of human tuberculosis: an
in situ immunofluorescence study using monoclonal antibodies. Pathology. 1990; 22:153–155.
103. Guzman J, Bross KJ, Würtemberger G, Freudenberg N, Costabel U. Tuberculous pleural effusions: lymphocyte phenotypes in comparison with other lymphocyte-rich effusions. Diagn Cytopathol. 1989; 5:139–144.
104. Manca F, Rossi G, Valle MT, Lantero S, Li Pira G, Fenoglio D, De Bruin J, Costantini M, Damiani G, Balbi B, et al. Limited clonal heterogeneity of antigen-specific T cells localizing in the pleural space during mycobacterial infection. Infect Immun. 1991; 59:503–513.
105. Rees A, Scoging A, Mehlert A, Young DB, Ivanyi J. Specificity of proliferative response of human CD8 clones to mycobacterial antigens. Eur J Immunol. 1988; 18:1881–1887.
106. Mohagheghpour N, Gammon D, Kawamura LM, van Vollenhoven A, Benike CJ, Engleman EG. CTL response to Mycobacterium tuberculosis: identification of an immunogenic epitope in the 19-kDa lipoprotein. J Immunol. 1998; 161:2400–2406.
107. Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P, Dockrell H, Pasvol G, Hill AV. Human cytolytic and interferon γ-secreting CD8
+ T lymphocytes specific for
Mycobacterium tuberculosis
. Proc Natl Acad Sci U S A. 1998; 95:270–275.
108. Gold MC, Napier RJ, Lewinsohn DM. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to
Mycobacterium tuberculosis
. Immunol Rev. 2015; 264:154–166.
109. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Coré M, Sleurs D, Serriari NE, Treiner E, et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013; 9:e1003681.
110. Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, Lévy E, Dusseaux M, Meyssonnier V, Premel V, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010; 11:701–708.
111. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010; 8:e1000407.
112. Chan J, Mehta S, Bharrhan S, Chen Y, Achkar JM, Casadevall A, Flynn J. The role of B cells and humoral immunity in
Mycobacterium tuberculosis infection. Semin Immunol. 2014; 26:588–600.
113. Maglione PJ, Chan J. How B cells shape the immune response against
Mycobacterium tuberculosis. Eur J Immunol. 2009; 39:676–686.
114. Rao M, Valentini D, Poiret T, Dodoo E, Parida S, Zumla A, Brighenti S, Maeurer M. B in TB: B Cells as mediators of clinically relevant immune responses in tuberculosis. Clin Infect Dis. 2015; 61:Suppl 3. S225–S234.
115. Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against
Mycobacterium tuberculosis infection. Immunol Rev. 2015; 264:167–181.
116. du Plessis WJ, Walzl G, Loxton AG. B cells as multi-functional players during
Mycobacterium tuberculosis infection and disease. Tuberculosis (Edinb). 2016; 97:118–125.
117. Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol. 2015; 15:185–189.
118. du Plessis WJ, Kleynhans L, du Plessis N, Stanley K, Malherbe ST, Maasdorp E, Ronacher K, Chegou NN, Walzl G, Loxton AG. The functional response of B cells to antigenic stimulation: a preliminary report of latent tuberculosis. PLoS One. 2016; 11:e0152710.
119. Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with
Mycobacterium tuberculosis. J Immunol. 2007; 178:7222–7234.
120. Maglione PJ, Xu J, Casadevall A, Chan J. Fc gamma receptors regulate immune activation and susceptibility during
Mycobacterium tuberculosis infection. J Immunol. 2008; 180:3329–3338.
121. Choi HS, Rai PR, Chu HW, Cool C, Chan ED. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med. 2002; 166:178–186.
122. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol. 2006; 8:218–232.
123. Kozakiewicz L, Phuah J, Flynn J, Chan J. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol. 2013; 783:225–250.
124. Phuah J, Wong EA, Gideon HP, Maiello P, Coleman MT, Hendricks MR, Ruden R, Cirrincione LR, Chan J, Lin PL, et al. Effects of B cell depletion on early
Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun. 2016; 84:1301–1311.
125. Khera AK, Afkhami S, Lai R, Jeyanathan M, Zganiacz A, Mandur T, Hammill J, Damjanovic D, Xing Z. Role of B cells in mucosal vaccine-induced protective CD8
+ T cell immunity against pulmonary tuberculosis. J Immunol. 2015; 195:2900–2907.
126. Kozakiewicz L, Chen Y, Xu J, Wang Y, Dunussi-Joannopoulos K, Ou Q, Flynn JL, Porcelli SA, Jacobs WR Jr, Chan J. B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog. 2013; 9:e1003472.
127. Glatman-Freedman A. The role of antibody-mediated immunity in defense against
Mycobacterium tuberculosis: advances toward a novel vaccine strategy. Tuberculosis (Edinb). 2006; 86:191–197.
128. Hagiwara E, Takahashi KI, Okubo T, Ohno S, Ueda A, Aoki A, Odagiri S, Ishigatsubo Y. Cigarette smoking depletes cells spontaneously secreting Th
1 cytokines in the human airway. Cytokine. 2001; 14:121–126.
129. Meuronen A, Majuri ML, Alenius H, Mäntylä T, Wolff H, Piirilä P, Laitinen A. Decreased cytokine and chemokine mRNA expression in bronchoalveolar lavage in asymptomatic smoking subjects. Respiration. 2008; 75:450–458.
130. Wickenden JA, Clarke MC, Rossi AG, Rahman I, Faux SP, Donaldson K, MacNee W. Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis. Am J Respir Cell Mol Biol. 2003; 29:562–570.
131. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26:677–704.
132. Zhang S, Petro TM. The effect of nicotine on murine CD4 T cell responses. Int J Immunopharmacol. 1996; 18:467–478.
133. Vardavas CI, Plada M, Tzatzarakis M, Marcos A, Warnberg J, Gomez-Martinez S, Breidenassel C, Gonzalez-Gross M, Tsatsakis AM, Saris WH, et al. Passive smoking alters circulating naïve/memory lymphocyte T-cell subpopulations in children. Pediatr Allergy Immunol. 2010; 21:1171–1178.
134. Zavitz CC, Gaschler GJ, Robbins CS, Botelho FM, Cox PG, Stampfli MR. Impact of cigarette smoke on T and B cell responsiveness. Cell Immunol. 2008; 253:38–44.
135. Wang H, Peng W, Weng Y, Ying H, Li H, Xia D, Yu W. Imbalance of Th17/Treg cells in mice with chronic cigarette smoke exposure. Int Immunopharmacol. 2012; 14:504–512.
136. Vargas-Rojas MI, Ramírez-Venegas A, Limón-Camacho L, Ochoa L, Hernández-Zenteno R, Sansores RH. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med. 2011; 105:1648–1654.
137. Chang Y, Al-Alwan L, Alshakfa S, Audusseau S, Mogas AK, Chouiali F, Nair P, Baglole CJ, Hamid Q, Eidelman DH. Upregulation of IL-17A/F from human lung tissue explants with cigarette smoke exposure: implications for COPD. Respir Res. 2014; 15:145.
138. Mikko M, Forsslund H, Cui L, Grunewald J, Wheelock AM, Wahlström J, Sköld CM. Increased intraepithelial (CD103+) CD8+ T cells in the airways of smokers with and without chronic obstructive pulmonary disease. Immunobiology. 2013; 218:225–231.
139. Chen G, Zhou M, Chen L, Meng ZJ, Xiong XZ, Liu HJ, Xin JB, Zhang JC. Cigarette smoke disturbs the survival of CD8+ Tc/Tregs partially through muscarinic receptors-dependent mechanisms in chronic obstructive pulmonary disease. PLoS One. 2016; 11:e0147232.
140. Moerloose KB, Pauwels RA, Joos GF. Short-term cigarette smoke exposure enhances allergic airway inflammation in mice. Am J Respir Crit Care Med. 2005; 172:168–172.
141. Ammitzbøll C, Börnsen L, Romme Christensen J, Ratzer R, Romme Nielsen B, Søndergaard HB, von Essen MR, Sellebjerg F. Smoking reduces circulating CD26
hiCD161
hi MAIT cells in healthy individuals and patients with multiple sclerosis. J Leukoc Biol. 2017; 101:1211–1220.
142. Reimer P, Weissinger F, Tony HP, Koniczek KH, Wilhelm M. Persistent polyclonal B-cell lymphocytosis--an important differential diagnosis of B-cell chronic lymphocytic leukemia. Ann Hematol. 2000; 79:327–331.
143. Kalra R, Singh SP, Savage SM, Finch GL, Sopori ML. Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca2+ stores. J Pharmacol Exp Ther. 2000; 293:166–171.
144. Savage SM, Donaldson LA, Cherian S, Chilukuri R, White VA, Sopori ML. Effects of cigarette smoke on the immune response. II. Chronic exposure to cigarette smoke inhibits surface immunoglobulin-mediated responses in B cells. Toxicol Appl Pharmacol. 1991; 111:523–529.
145. Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 2012; 3:51.
146. Shevach EM. Mechanisms of Foxp3
+ T regulatory cell-mediated suppression. Immunity. 2009; 30:636–645.
147. Shang S, Harton M, Tamayo MH, Shanley C, Palanisamy GS, Caraway M, Chan ED, Basaraba RJ, Orme IM, Ordway DJ. Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of
M. tuberculosis
. Tuberculosis (Edinb). 2011; 91:378–385.
148. Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS. A role for CD4
+CD25
+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol. 2006; 144:25–34.
149. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med. 2006; 173:803–810.
150. Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, Wu C, Larmonier N, Zhang W, Zhang H, et al. CD4
+CD25
+Foxp3
+ regulatory T cells suppress
Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol. 2007; 123:50–59.
151. Hougardy JM, Place S, Hildebrand M, Drowart A, Debrie AS, Locht C, Mascart F. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med. 2007; 176:409–416.
152. Fletcher HA, Pathan AA, Berthoud TK, Dunachie SJ, Whelan KT, Alder NC, Sander CR, Hill AV, McShane H. Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF-β1. Vaccine. 2008; 26:5269–5275.
153. Chiacchio T, Casetti R, Butera O, Vanini V, Carrara S, Girardi E, Di Mitri D, Battistini L, Martini F, Borsellino G, et al. Characterization of regulatory T cells identified as CD4
+CD25
highCD39
+ in patients with active tuberculosis. Clin Exp Immunol. 2009; 156:463–470.
154. Li L, Lao SH, Wu CY. Increased frequency of CD4
+CD25
high Treg cells inhibit BCG-specific induction of IFN-γ by CD4
+ T cells from TB patients. Tuberculosis (Edinb). 2007; 87:526–534.
155. Hougardy JM, Verscheure V, Locht C, Mascart F.
In vitro expansion of CD4
+CD25
high Foxp3
+CD127
low/− regulatory T cells from peripheral blood lymphocytes of healthy
Mycobacterium tuberculosis-infected humans. Microbes Infect. 2007; 9:1325–1332.
156. He XY, Xiao L, Chen HB, Hao J, Li J, Wang YJ, He K, Gao Y, Shi BY. T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. Eur J Clin Microbiol Infect Dis. 2010; 29:643–650.
157. Mahan CS, Thomas JJ, Boom WH, Rojas RE. CD4
+ CD25
high Foxp3
+ regulatory T cells downregulate human Vδ2
+ T-lymphocyte function triggered by anti-CD3 or phosphoantigen. Immunology. 2009; 127:398–407.
158. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M, Peyrat MA, Caccamo N, Sireci G, Salerno A. Granulysin-dependent killing of intracellular and extracellular
Mycobacterium tuberculosis by Vγ9/Vδ2 T lymphocytes. J Infect Dis. 2001; 184:1082–1085.
159. Semple PL, Binder AB, Davids M, Maredza A, van Zyl-Smit RN, Dheda K. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am J Respir Crit Care Med. 2013; 187:1249–1258.
160. Babu S, Bhat SQ, Kumar NP, Kumaraswami V, Nutman TB. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J Infect Dis. 2010; 201:20–31.
161. Ibrahim L, Salah M, Abd El Rahman A, Zeidan A, Ragb M. Crucial role of CD4+CD25+Foxp3+ T regulatory cell, interferon-γ and interleukin-16 in malignant and tuberculous pleural effusions. Immunol Invest. 2013; 42:122–136.
162. Barceló B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agustí AG. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur Respir J. 2008; 31:555–562.
163. Ménard L, Rola-Pleszczynski M. Nicotine induces T-suppressor cells: modulation by the nicotinic antagonist D-tubocurarine and myasthenic serum. Clin Immunol Immunopathol. 1987; 44:107–113.
164. Wang DW, Zhou RB, Yao YM, Zhu XM, Yin YM, Zhao GJ, Dong N, Sheng ZY. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4
+CD25
+ regulatory T cells in mice
in vitro
. J Pharmacol Exp Ther. 2010; 335:553–561.
165. Saresella M, Marventano I, Longhi R, Lissoni F, Trabattoni D, Mendozzi L, Caputo D, Clerici M. CD4+CD25+Foxp3+PD1- regulatory T cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy. FASEB J. 2008; 22:3500–3508.
166. Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, Steyn AJ. Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev Mol Med. 2011; 13:e39.
167. McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP, Nizet V, Crotty Alexander LE. Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun. 2015; 83:2443–2452.
168. Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV. The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog. 2009; 5:e1000534.