1. Malcolm J, Millington O, Millhouse E, Campbell L, Adrados Planell A, Butcher JP, et al. Mast cells contribute to
Porphyromonas gingivalis-induced bone loss. J Dent Res. 2016; 95:704–710.
2. Feng X, Zhu L, Xu L, Meng H, Zhang L, Ren X, et al. Distribution of 8 periodontal microorganisms in family members of Chinese patients with aggressive periodontitis. Arch Oral Biol. 2015; 60:400–407.
3. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012; 91:914–920.
4. Marcenes W, Kassebaum NJ, Bernabe E, Flaxman A, Naghavi M, Lopez A, et al. Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res. 2013; 92:592–597.
5. Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol. 2008; 35:286–291.
6. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005; 38:135–187.
7. How KY, Song KP, Chan KG.
Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016; 7:53.
8. van Winkelhoff AJ, Loos BG, van der Reijden WA, van der Velden U.
Porphyromonas gingivalis, Bacteroides forsythus and other putative periodontal pathogens in subjects with and without periodontal destruction. J Clin Periodontol. 2002; 29:1023–1028.
9. Periasamy S, Kolenbrander PE. Mutualistic biofilm communities develop with
Porphyromonas gingivalis and initial, early, and late colonizers of enamel. J Bacteriol. 2009; 191:6804–6811.
10. Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen
Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol. 2013; 8:607–620.
11. Kirschbaum M, Schultze-Mosgau S, Pfister W, Eick S. Mixture of periodontopathogenic bacteria influences interaction with KB cells. Anaerobe. 2010; 16:461–468.
12. Saito A, Kokubu E, Inagaki S, Imamura K, Kita D, Lamont RJ, et al.
Porphyromonas gingivalis entry into gingival epithelial cells modulated by
Fusobacterium nucleatum is dependent on lipid rafts. Microb Pathog. 2012; 53:234–242.
13. Feuille F, Ebersole JL, Kesavalu L, Stepfen MJ, Holt SC. Mixed infection with
Porphyromonas gingivalis and
Fusobacterium nucleatum in a murine lesion model: potential synergistic effects on virulence. Infect Immun. 1996; 64:2094–2100.
14. Metzger Z, Lin YY, Dimeo F, Ambrose WW, Trope M, Arnold RR. Synergistic pathogenicity of
Porphyromonas gingivalis and
Fusobacterium nucleatum in the mouse subcutaneous chamber model. J Endod. 2009; 35:86–94.
15. Diaz PI, Zilm PS, Rogers AH.
Fusobacterium nucleatum supports the growth of
Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology. 2002; 148:467–472.
16. Ahn SH, Song JE, Kim S, Cho SH, Lim YK, Kook JK, et al. NOX1/2 activation in human gingival fibroblasts by
Fusobacterium nucleatum facilitates attachment of
Porphyromonas gingivalis. Arch Microbiol. 2016; 198:573–583.
17. Periasamy S, Chalmers NI, Du-Thumm L, Kolenbrander PE.
Fusobacterium nucleatum ATCC 10953 requires
Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes
Streptococcus oralis 34. Appl Environ Microbiol. 2009; 75:3250–3257.
18. Ebersole JL, Feuille F, Kesavalu L, Holt SC. Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of
Porphyromonas gingivalis and
Fusobacterium nucleatum
. Microb Pathog. 1997; 23:23–32.
19. Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, et al. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA. 1993; 90:3009–3013.
20. Amoroso PF, Adams RJ, Waters MG, Williams DW. Titanium surface modification and its effect on the adherence of
Porphyromonas gingivalis: an
in vitro study. Clin Oral Implants Res. 2006; 17:633–637.
21. de Avila ED, Avila-Campos MJ, Vergani CE, Spolidorio DM, Mollo Fde A Jr. Structural and quantitative analysis of a mature anaerobic biofilm on different implant abutment surfaces. J Prosthet Dent. 2016; 115:428–436.
22. de Avila ED, Lima BP, Sekiya T, Torii Y, Ogawa T, Shi W, et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials. 2015; 67:84–92.
23. Montelongo-Jauregui D, Srinivasan A, Ramasubramanian AK, Lopez-Ribot JL. An
in vitro model for oral mixed biofilms of
Candida albicans and
Streptococcus gordonii in synthetic saliva. Front Microbiol. 2016; 7:686.
24. Barros J, Grenho L, Fontenente S, Manuel CM, Nunes OC, Melo LF, et al.
Staphylococcus aureus and
Escherichia coli dual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles. J Biomed Mater Res A. 2017; 105:491–497.
25. Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano. 2016; 10:4779–4789.
26. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Pandiselvi K, Kalanjiam MA, Murugan K, et al. Biological therapeutics of
Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. Microb Pathog. 2017; 104:268–277.
27. Badihi Hauslich L, Sela MN, Steinberg D, Rosen G, Kohavi D. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res. 2013; 24:Suppl A100. 49–56.
28. Kohavi D, Klinger A, Steinberg D, Mann E, Sela NM. Alpha-amylase and salivary albumin adsorption onto titanium, enamel and dentin: an
in vivo study. Biomaterials. 1997; 18:903–906.
29. Moura JS, da Silva WJ, Pereira T, Del Bel Cury AA, Rodrigues Garcia RC. Influence of acrylic resin polymerization methods and saliva on the adherence of four Candida species. J Prosthet Dent. 2006; 96:205–211.
30. Pereira-Cenci T, Cury AA, Cenci MS, Rodrigues-Garcia RC. In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. Int J Prosthodont. 2007; 20:308–310.
31. Sánchez MC, Llama-Palacios A, Blanc V, León R, Herrera D, Sanz M. Structure, viability and bacterial kinetics of an
in vitro biofilm model using six bacteria from the subgingival microbiota. J Periodontal Res. 2011; 46:252–260.
32. Thein ZM, Samaranayake YH, Samaranayake LP. Characteristics of dual species Candida biofilms on denture acrylic surfaces. Arch Oral Biol. 2007; 52:1200–1208.
33. Ciandrini E, Campana R, Federici S, Manti A, Battistelli M, Falcieri E, et al.
In vitro activity of Carvacrol against titanium-adherent oral biofilms and planktonic cultures. Clin Oral Investig. 2014; 18:2001–2013.
34. Navarro Llorens JM, Tormo A, Martinez-Garcia E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev. 2010; 34:476–495.
35. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol. 2012; 194:686–701.
36. Kim KS, Anthony BF. Importance of bacterial growth phase in determining minimal bactericidal concentrations of penicillin and methicillin. Antimicrob Agents Chemother. 1981; 19:1075–1077.
37. de Avila ED, de Molon R, Vergani CE, Mollo FA Jr, Salih V. The relationship between biofilm and physical-chemical properties of implant abutment materials for successful dental implants. Materials (Basel). 2014; 7:3651–3662.
38. de Avila ED, de Molon R, Spolidorio DM, Mollo FA Jr. Implications of surface and bulk properties of abutment implants and their degradation in the health of periodontal tissue. Materials (Basel). 2013; 6:5951–5966.
39. de Avila ED, Vergani CE, Mollo FA Junior, Junior MJ, Shi W, Lux R. Effect of titanium and zirconia dental implant abutments on a cultivable polymicrobial saliva community. J Prosthet Dent. 2017; 118:481–487.
40. de Avila ED, de Molon RS, Lima BP, Lux R, Shi W, Junior MJ, et al. Impact of physical chemical characteristics of abutment implant surfaces on bacteria adhesion. J Oral Implantol. 2016; 42:153–158.