1. Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017; 44:456–462.
2. Lee JH, Lee JS, Choi JK, Kweon HI, Kim YT, Choi SH. National dental policies and socio-demographic factors affecting changes in the incidence of periodontal treatments in Korean: A nationwide population-based retrospective cohort study from 2002-2013. BMC Oral Health. 2016; 16:118.
3. Lee JH, Oh JY, Choi JK, Kim YT, Park YS, Jeong SN, et al. Trends in the incidence of tooth extraction due to periodontal disease: results of a 12-year longitudinal cohort study in South Korea. J Periodontal Implant Sci. 2017; 47:264–272.
4. Lee JH, Lee JS, Park JY, Choi JK, Kim DW, Kim YT, et al. Association of lifestyle-related comorbidities with periodontitis: a nationwide cohort study in Korea. Medicine (Baltimore). 2015; 94:e1567.
5. Lee JH, Choi JK, Kim SH, Cho KH, Kim YT, Choi SH, et al. Association between periodontal flap surgery for periodontitis and vasculogenic erectile dysfunction in Koreans. J Periodontal Implant Sci. 2017; 47:96–105.
6. Lee JH, Oh JY, Youk TM, Jeong SN, Kim YT, Choi SH. Association between periodontal disease and non-communicable diseases: a 12-year longitudinal health-examinee cohort study in South Korea. Medicine (Baltimore). 2017; 96:e7398.
7. Choi JK, Kim YT, Kweon HI, Park EC, Choi SH, Lee JH. Effect of periodontitis on the development of osteoporosis: results from a nationwide population-based cohort study (2003–2013). BMC Womens Health. 2017; 17:77.
8. Lee JH, Kweon HH, Choi JK, Kim YT, Choi SH. Association between periodontal disease and prostate cancer: results of a 12-year longitudinal cohort study in South Korea. J Cancer. 2017; 8:2959–2965.
9. Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000. 2017; 75:152–188.
10. Martins SH, Novaes AB Jr, Taba M Jr, Palioto DB, Messora MR, Reino DM, et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: a randomized controlled clinical trial. J Clin Periodontol. 2017; 44:717–728.
11. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin J, Sardo-Infirri J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J. 1982; 32:281–291.
12. Sklan JE, Plassard AJ, Fabbri D, Landman BA. Toward content based image retrieval with deep convolutional neural networks. In : Proc SPIE Int Soc Opt Eng; 2015. p. 9417.
13. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv e-print 2017;arXiv:1711.05225.
14. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv e-print 2017;arXiv:1707.01836.
15. Garcia-Hernandez JJ, Gomez-Flores W, Rubio-Loyola J. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Comput Biol Med. 2016; 68:37–48.
16. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42:60–88.
17. Kim TS, Obst C, Zehaczek S, Geenen C. Detection of bone loss with different X-ray techniques in periodontal patients. J Periodontol. 2008; 79:1141–1149.
18. Armitage GC. Periodontal diagnoses and classification of periodontal diseases. Periodontol 2000. 2004; 34:9–21.
19. Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007; 78:1387–1399.
20. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016; 35:1285–1298.
21. Ohsugi H, Tabuchi H, Enno H, Ishitobi N. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci Rep. 2017; 7:9425.
22. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv e-print 2014;arXiv:1409.556.
23. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In : Proceedings of the 27th International Conference on International Conference on Machine Learning; 2010 Jun 21–24; Haifa. Madison (WI): Omnipress;2010. p. 807–814.
25. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv e-print 2016;arXiv:1603.04467.
26. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015; 175:1828–1837.
27. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316:2402–2410.
28. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017; 284:574–582.
29. Wang R. Edge detection using convolutional neural network. In : In : Cheng L, Liu Q, Ronzhin A, editors. Advances in neural networks, ISNN 2016. 13th International Symposium on Neural Networks, ISNN 2016; 2016 Jul 6–8; Saint Petersburg. Cham: Springer International Publishing;2016. p. 12–20.
30. Ouyang W, Wang X. Joint deep learning for pedestrian detection. In : 2013 IEEE International Conference on Computer Vision (ICCV); 2013 Dec 1–8; Sydney. Piscataway (NJ): IEEE;2013. p. 2056–2063.
31. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In : The IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 26–Jul 1; Las Vegas Valley (NV). Piscataway (NJ): IEEE;2016. p. 2818–2826. .
32. Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PT. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. arXiv e-print 2017;arXiv:1609.0483.
33. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542:115–118.
34. Peng X, Sun B, Ali K, Saenko K. Learning deep object detectors from 3D models. In : 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 7–13; Santiago. Piscataway (NJ): IEEE;2015. p. 1278–1286.