1. Park KH. Medical treatment of glaucoma. J Korean Med Assoc. 2005; 48(2):189–196.
2. Sommer A, Miller NR, Pollack I, Maumenee AE, George T. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977; 95(12):2149–2156.
3. Seong MC, Choi JW, Lee JE, Kim SH, Lee CH, Kook MS. The relationship between parameters measured by optical coherence tomography and visual field indices. J Korean Ophthalmol Soc. 2008; 49(5):771–777.
4. Roh YR, Kwon JW, Han YK, Wee WR, Lee JH, Park KH. Comparison of the detection rate, location and amount of retinal nerve fiber layer defect. J Korean Ophthalmol Soc. 2011; 52(2):210–215.
5. Carney LG, Jacobs RJ. Mechanisms of visual loss in corneal edema. Arch Ophthalmol. 1984; 102(7):1068–1071.
6. Costagliola C, Romano V, Forbice E, Angi M, Pascotto A, Boccia T, et al. Corneal oedema and its medical treatment. Clin Exp Optom. 2013; 96(6):529–535.
7. Tyrrell RA, Owens DA. A rapid technique to assess the resting states of the eyes and other threshold phenomena: the Modified Binary Search (MOBS). Behav Res Methods Instrum Comput. 1988; 20(2):137–141.
8. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837–845.
9. Miller RG. Jackknifing variances. Ann Math Stat. 1968; 39(2):567–582.
10. Miller RG. The jackknife: a review. Biometrika. 1974; 61(1):1–15.
11. Liu S, Lam S, Weinreb RN, Ye C, Cheung CY, Lai G, et al. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Invest Ophthalmol Vis Sci. 2011; 52(10):7325–7331.
12. Na SC, Hong S, Shin JP. Humphrey SITA and octopus TOP perimetry on normal Korean subjects. J Korean Ophthalmol Soc. 2002; 43(10):2034–2041.
13. Patel A, Wollstein G, Ishikawa H, Schuman JS. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry. Ophthalmology. 2007; 114(3):480–487.
14. Racette L, Medeiros FA, Zangwill LM, Ng D, Weinreb RN, Sample PA. Diagnostic accuracy of the Matrix 24-2 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest Ophthalmol Vis Sci. 2008; 49(3):954–960.
15. Yoon MK, Hwang TN, Day S, Hong J, Porco T, McCulley TJ. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease. Middle East Afr J Ophthalmol. 2012; 19(2):211–215.
16. Nam Y, Kang SY, Park SB, Sung KR, Kook MS. Performance of humphrey matrix frequency doubling technology perimetry and standard automated perimetry global indices. J Korean Ophthalmol Soc. 2009; 50(11):1680–1685.
17. Anderson DR, Patella VM. Automated Static Perimetry. 2nd ed. St. Louis, MO: Mosby;1999.
18. Nayak BK, Dharwadkar S. Interpretation of autoperimetry. J Clin Ophthalmol Res. 2014; 2(1):31–59.
19. Thomas R, George R. Interpreting automated perimetry. Indian J Ophthalmol. 2001; 49(2):125–140.
20. Heo DW, Kim KN, Lee MW, Lee SB, Kim CS. Properties of pattern standard deviation in open-angle glaucoma patients with hemi-optic neuropathy and bi-optic neuropathy. PLoS One. 2017; 12(3):e0171960.
21. Clement CI, Goldberg I, Healey PR, Graham S. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma. Br J Ophthalmol. 2009; 93(5):582–588.
22. Burgansky-Eliash Z, Wollstein G, Patel A, Bilonick RA, Ishikawa H, Kagemann L, et al. Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol. 2007; 91(7):933–938.
23. Turpin A, McKendrick AM, Johnson CA, Vingrys AJ. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. Invest Ophthalmol Vis Sci. 2002; 43(2):322–331.
24. Fredette MJ, Giguère A, Anderson DR, Budenz DL, McSoley J. Comparison of matrix with humphrey field analyzer II with SITA. Optom Vis Sci. 2015; 92(5):527–536.