Journal List > Nat Prod Sci > v.24(3) > 1102541

Lee, Quilantang, Nam, Piao, Chung, and Lee: Optimization of Extraction Conditions and Quantitative Analysis of Isoquercitrin and Caffeic Acid from Aster scaber

Abstract

To determine the optimum extraction conditions that give the highest yield of isoquercitrin and caffeic acid from Aster scaber, the effects of four extraction variables (solvent concentrations, extraction time, number of repeated extraction, and solvent volumes) on isoquercitrin and caffeic acid yield was examined via HPLC-UV. Our results showed that the highest extract and isoquercitrin yield were observed when A. scaber was extracted with 450 mL distilled water for 8 hr repeatedly for three times. In case of caffeic acid, the content was higher in the two repeated extracts. Also, content analysis of isoquercitrin in Aster species was performed in which A. fastigiatus, A. ageratoides, and A. scaber exhibited the highest isoquercitrin content at 6.39, 5.68, and 2.79 mg/g extract, respectively. In case of caffeic acid, the highest content of A. scaber and A. glehni was 0.64 and 0.56 mg/g extract, respectively. This study reports an optimized method for extraction of isoquercitrin and caffeic acid from A. scaber and evaluates potential sources of the compounds.

REFERENCES

(1). Jung C. M., Kwon H. C., Seo J. J., Ohizumi Y., Matsunaga K., Saito S., Lee K. R.Chem. Pharm. Bull. 2001; 49:912–914.
(2). Kim H. M., Lee D. G., Cho E. J., Choi K., Ku J. J., Park K. W., Lee S. H.Hort. Environ. Biotechnol. 2013; 54:183–189.
(3). Nugroho A., Kim K. H., Lee K. R., Alam M. B., Choi J. S., Kim W. B., Park H. J.Arch. Pharm. Res. 2009; 32:1361–1367.
(4). Chung T. Y., Eiserich J. P., Shibamoto T. J.Agric. Food Chem. 1993; 41:1693–1697.
(5). Kwon H. C., Jung C. M., Shin C. G., Lee J. K., Choi S. U., Kim S. Y., Lee K. R.Chem. Pharm. Bull. 2000; 48:1796–1798.
(6). Woo J. H., Jeong H. S., Yu J. S., Chang Y. D., Lee C. H.Korean J. Plant Res. 2008; 21:52–59.
(7). Chung M. J., Lee S., Park Y. I., Lee J., Kwon K. H.Life Sci. 2016; 148:173–182.
(8). Choi N. S., Oh S. S., Lee J. M.Koeran J. Food Sci. Technol. 2001; 6:745–752.
(9). Nugroho A., Kim K. H., Lee K. R., Alam M. B., Choi J. S., Kim W. B., Park H. J.Arch. Pharm. Res. 2009; 10:1361–1367.
(10). Kim S. A., Kim J. S.Korean J. Food Sci. Technol. 2012; 6:686–691.
(11). Beom S. W., Jiang G. H., Eun J. B.Korean J. Food Preserv. 2015; 22:51–55.
crossref
(12). Jeong Y. S., Lee S. H., Song J., Hwang K. A., Noh G. M., Jang D. E., Hwang I. G.Korean J. Food Nutr. 2016; 29:767–776.
(13). Price K. R., Casuscelli F., Colquhoun I. J., Rhodes M. J. C. J.Sci. Food Agric. 1998; 77:468–472.
(14). Rogerio A. P., Kanashiro A., Fontanari C., da Silva E. V., Lucisano-Valim Y. M., Soares E. G., Faccioli L. H.Inflamm. Res. 2007; 56:402–408.
(15). Jung S. H., Kim B. J., Lee E. H., Osborne N. N.Neurochem. Int. 2010; 57:713–721.
(16). Gasparotto Junior A., Gasparotto F. M., Lourenco E. L., Crestani S., Stefanello M. E., Salvador M. J., de Silva-Santos J. E., Marques M. C., Kassuya A. L. J.Ethnopharmacol. 2011; 134:363–372.
(17). Makino T., Kanemaru M., Okuyama S., Shimizu R., Tanaka H., Mizukami H. J.Nat. Med. 2013; 67:881–886.
(18). Valentová K., Vrba J., Bancí ová M., Ulrichová J., K en V.Food Chem. Toxicol. 2014; 68:267–282.
(19). Clifford M. N. J.Sci. Food Agric. 1999; 79:362–372.
crossref
(20). Chiou S. Y., Sung J. M., Huang P. W., Lin S. D. J.Med. Food. 2017; 20:140–151.
(21). Kim A. R., Jin Q., Jin H. G., Ko H. J., Woo E. R.Arch. Pharm. Res. 2014; 37:845–851.
(22). Yun J. E., Woo E. R., Lee D. G. J.Funct. Foods. 2016; 22:347–357.
(23). Kim H. K., Kwon Y. J., Kim Y. E., Nahmgung B.Korean J. Food Preserv. 2004; 1:88–93.
(24). Thiruvengadam M., Praveen N., Yu B. R., Kim S. H., Chung I. M.Acta Biol. Hung. 2014; 65:144–155.
(25). Nugroho A., Kim M. H., Choi J., Choi J., Jung W. T., Lee K. T., Park H. J.Arch. Pharm. Res. 2012; 35:423–430.

Fig. 1.
Structures of isoquercitrin and caffeic acid.
nps-24-199f1.tif
Fig. 2.
HPLC chromatograms of isoquercitrin (A), myricetin (B), quercetin (C), kaempferol (D), and caffeic acid (E).
nps-24-199f2.tif
Fig. 3.
HPLC chromatograms of samples extracted under different conditions: distilled water (A), 8 hr extraction (B), 3-time extraction (C), and 450 ml solvent extraction (D) showing caffeic acid (dotted arrow) and isoquercitrin peaks (line arrow)
nps-24-199f3.tif
Fig. 4.
HPLC chromatograms of the MeOH extracts of A. fastigiatus (A) and A. ageratoides (B) showing isoquercitrin peak (line arrow).
nps-24-199f4.tif
Fig. 5.
HPLC chromatograms of the MeOH extracts of A. scaber (A) and A. glehni (B) showing caffeic acid peak (line arrow).
nps-24-199f5.tif
Table 1.
Calibration curves of isoquercitrin and caffeic acid
Compound tR Calibration equation a Correlation factor, r2 b
Isoquercitrin 15.71 Y = 1000000X + 16247 0.9982
Caffeic acid 12.83 Y = 2000000X – 5935.4 0.9998

a Y = peak area, X = concentration of standard (mg/mL).

b r

2 = correlation coefficient for five data points in the calibration curve.

Table 2.
Extract yield fro conditions
Treatment Sample Yield (g)
30% EtOH 3.22
50% EtOH 3.55
Solvents concentration 70% EtOH 3.97
EtOH 1.98
Water 4.12
1 1.71
Extraction time (hr) 2 2.04
4 2.22
8 2.44
Number of repeated extraction (time) 1 1.84
2 2.79
3 3.15
150 1.49
Solvent volumes (mL) 300 1.81
450 2.37
Table 3.
Isoquercitrin and caffeic acid yield from A. scaber leaves following different extraction conditions
Treatment Sample Contents (mg/g DW)
Isoquercitrin Caffeic acid
30% EtOH 0.098 ± 0.003 0.019 ± 0.033
50% EtOH 0.135 ± 0.006 0.021 ± 0.037
Solvents concentration 70% EtOH 0.223 ± 0.003 0.028 ± 0.048
EtOH 0.238 ± 0.003 0.029 ± 0.050
Water 0.732 ± 0.007 0.322 ± 0.010
1 0.097 ± 0.001 0.029 ± 0.050
Extraction time (hr) 2 0.107 ± 0.004 0.033 ± 0.057
4 0.171 ± 0.063 0.035 ± 0.060
8 0.267 ± 0.005 0.042 ± 0.073
Number of repeated extraction (time) 1 0.173 ± 0.003 0.032 ± 0.056
2 0.260 ± 0.007 0.053 ± 0.093
3 0.278 ± 0.032 0.051 ± 0.088
150 0.104 ± 0.035 0.026 ± 0.045
Solvent volumes (mL) 300 0.094 ± 0.001 0.029 ± 0.051
450 0.136 ± 0.001 0.033 ± 0.057

Data are represented as mean ± S.D. (n = 3) mg/g DW

Table 4.
Isoquercitrin and caffeic acid content of the MeOH extracts of selected Aster species
Species Contents (mg/g extract)
Isoquercitrin Caffeic acid
A. ageratoides 5.69 ± 0.24 0.41 ± 0.01
A. altaicus var. uchiyamae ND 0.20 ± 0.03
A. ciliosus 0.63 ± 0.26 0.54 ± 0.00
A. fastigiatus 6.39 ± 0.40 0.32 ± 0.02
A. glehni ND 0.56 ± 0.03
A. hayatae 0.06 ± 0.01 0.31 ± 0.01
A. incisa 0.04 ± 0.03 0.37 ± 0.02
A. koraiensis 0.42 ± 0.01 0.23 ± 0.02
A. maackii 1.05 ± 0.11 0.25 ± 0.21
A. pekinensis 1.11 ± 0.08 tr
A. pilosus 0.68 ± 0.02 0.44 ± 0.01
A. scaber 2.79 ± 0.06 0.64 ± 0.02
A. spathulifolius 0.14 ± 0.03 0.26 ± 0.00
A. spathulifolius var. oharae 0.01 ± 0.10 0.26 ± 0.01
A. tataricus 1.05 ± 0.09 0.27 ± 0.00
A. tripolium ND 0.19 ± 0.00
A. yomena 0.02 ± 0.04 0.29 ± 0.02

Data are represented as mean ± S.D. (n = 3) in mg/g of the MeOH extracts of the samples

ND = not detected

tr = trace

A. scaber was extracted using optimized extraction conditions

TOOLS
Similar articles