Journal List > Lab Med Online > v.8(3) > 1099742

Kim and Koo: Biological and Genetic Characteristics of Clinically Isolated Enterobacter cloacae with Multidrug Resistance

Abstract

Background:

From January 2014 to December 2015, 69 clones of Enterobacter cloacae showing multidrug resistance to six classes of antimicrobial agents were collected from two medical centers in Korea.

Methods:

Minimum inhibitory concentrations were determined using the E-test method, and 17 genes were detected using polymerase chain reaction (PCR). The epidemiological relatedness of the strains was identified using repetitive element sequence-based PCR and multilocus sequence typing.

Results:

The 69 E. cloacae clones produced extended spectrum β lactamase (ESBL) and AmpC and showed multidrug resistance to cefotaxime, ceftazidime, and aztreonam. We identified the following sequence types: ST56 of type VI for ESBL SHV (N=12, 17.4%); ST53, ST114, ST113, and ST550 of types I, IV, VI, and VII, respectively, for CTX-M (N=11, 15.9%); and ST668 of type III for the carbapenemase NDM gene (N=1, 1.5%). The AmpC DHA gene (N=2, 2.89%) was confirmed as ST134, although its type was not identified, whereas EBC (MIR/ACT; N=18, 26.1%) was identified as ST53, ST24, ST41, ST114, ST442, ST446, ST484, and ST550 of types V, I, III, IV, VII, and VI, respectively. The formed subclasses were blaCTX-M-3 and blaCTX-M-22 by CTX-M-1, blaCTX-M-9 and blaCTX-M-125 by CTX-M-9, blaDHA-1 by DHA, and blaMIR-7 and blaACT-15,17,18,25,27,28 by EBC (MIR/ACT).

Conclusions:

There were no epidemiological relationships between the gene products and the occurrence of resistance among the strains.

REFERENCES

1.Sanders WE Jr., Sanders CC. Enterobacter spp.: pathogens poised to fourish at the turn of the century. Clin Microbiol Rev. 1997. 10:220–41.
2.Dalben M., Varkulja G., Basso M., Krebs VL., Gibelli MA., van der Heijden I, et al. Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. J Hosp Infect. 2008. 70:7–14.
crossref
3.Fernandez A., Pereira MJ., Suarez JM., Poza M., Trevino M., Villalón P, et al. Emergence in Spain of a multidrug-resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum beta-lactamase. J Clin Microbiol. 2011. 49:822–8.
4.Hamada Y., Watanabe K., Tatsuya T., Mezaki K., Takeuchi S., Shimizu T, et al. Three cases of IMP-type metallo-β-lactamase-producing Enterobacter cloacae bloodstream infection in Japan. J Infect Chemother. 2013. 19:956–8.
crossref
5.Schaberg DR., Culver DH., Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med. 1991. 91:S72–S75.
crossref
6.Sirot D., Sirot J., Labia R., Morand A., Courvalin P., Darfeuille-Michaud A, et al. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identifcation of CTX-1, a novel β-lactamase. J Antimicrob Chemother. 1987. 20:323–34.
7.Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. Basic local alignment search tool. Available from. http://www.ncbi.nlm.nih.gov/BLAST. Accessed.
8.Jolley K. Enterobacter cloacae MLST Databases. Available from. http://pubmlst.org/ecloacae/. Accessed.
9.Park YJ., Park SY., Oh EJ., Park JJ., Lee KY., Woo GJ, et al. Occurrence of extended-spectrum β-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn Microbiol Infect Dis. 2005. 51:265–9.
crossref
10.Coudron PE., Moland ES., Sanders CC. Occurrence and detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae at a veterans medical center: seek and you may fnd. J Clin Microbiol. 1997. 35:2593–7.
11.Souna D., Amir AS., Bekhoucha SN., Berrazeg M., Drissi M. Molecular typing and characterization of TEM, SHV, CTX-M, and CMY-2 β-lactamases in Enterobacter cloacae strains isolated in patients and their hospital environment in the west of Algeria. Med Mal Infect. 2014. 44:146–52.
crossref
12.Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995. 8:557–84.
13.Jeong SH. Extended-spectrum beta-lactams-resistant gram-negative bacilli. Asian Conf Clin Pathol. 2000. 6:S61–S62.
14.Harada S., Ishii Y., Yamaguchi K. Extended-spectrum beta-lactamases: implications for the clinical laboratory and therapy. Korean J Lab Med. 2008. 28:401–12.
15.Ko CS., Sung JY., Koo SH., Kwon GC., Shin SY., Park JW. Prevalence of extended-spectrum beta-lactamase in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med. 2007. 27:344–50.
16.Liu SY., Su LH., Yeh YL., Chu C., Lai JC., Chiu CH. Characterization of plasmids encoding CTX-M-3 extened-spectrum β-lactamase from Enterobacteriaceae isolated at a university hospital in Taiwan. Int J Antimicrob Agents. 2007. 29:440–5.
17.Kim CK., Yum JH., Yong D., Jeong SH., Lee K., Chong Y. Detection of CTX-M-type extended-spectrum β-lactamase in clinical isolates of chromosomal AmpC beta-lactamase-producing Enterobacteriaceae from Korea and their molecular characteristics. Korean J Clin Microbiol. 2008. 11:90–7.
18.Baraniak A., Sadowy E., Hryniewicz W., Gniadkowski M. Two different extended-spectrum β-lactamase (ESBLs) in one of the frst ESBL-producing Salmonella isolates in Poland. J Clin Microbiol. 2002. 40:1095–7.
19.Baraniak A., Fiett J., Sulikowska A., Hryniewicz W., Gniadkowski M. Countrywide spread of CTX-M-3 extended-spectrum β-lactamaseproducing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother. 2002. 46:151–9.
20.Yu Y., Ji S., Chen Y., Zhou W., Wei Z., Li L, et al. Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. J Infect. 2007. 54:53–7.
crossref
21.Author XX. First cases of NDM-1 (New Delhi Metallo-beta-lactamase)-producing carbapenem resistant Enterobacteriaceae in Korea. Available from. http://cdc.go.kr/CDC/cms/content/mobile/52/12552_view.html. Accessed.
22.Jeong SH., Lee KM., Lee J., Bae IK., Kim JS., Kim HS, et al. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis. 2015. 82:70–2.
23.Barnaud G., Arlet G., Danglot C., Philippon A. Cloning and sequencing of the gene encoding the AmpC β-lactamase of Morganella morganii. FEMS Microbiol Lett. 1997. 148:15–20.
crossref
24.Poirel L., Guibert M., Girlich D., Naas T., Nordmann P. Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. Antimicrob Agents Chemother. 1999. 43:769–76.
25.Girlich D., Poirel L., Nordmann P. Clonal distribution of multidrug-resis-tant Enterobacter cloacae. Diagn Microbiol Infect Dis. 2015. 81:264–8.
crossref
26.Ryoo NH., Kim EC., Hong SG., Park YJ., Lee K., Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
crossref
27.Chang FY., Siu LK., Fung CP., Huang MH., Ho M. Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrob Agents Chemother. 2001. 45:2407–13.
28.Bae IK., Kang HK., Jang IH., Lee W., Kim K., Kim JO. Detection of carbapenemase in clinical Enterobactereriaceae isolates using the VITEK AST-N202 card. Infect Chemother. 2015. 47:167–74.
29.Huang L., Wang X., Feng Y., Xie Y., Xie L., Zong Z. First identifcation of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann Clin Microbiol Antimicrob. 2015. 14:51.
crossref
30.Tato M., Coque TM., Ruíz-Garbajosa P., Pintado V., Cobo J., Sader HS. Complex clonal and plasmid epidemiology in the frst outbreak of Enterobacteriaceae infection involving VIM-1 metallo-β-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007. 45:1171–8.
31.Perez-Perez FJ., Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002. 40:2153–62.
32.Miyoshi-Akiyama T., Hayakawa K., Ohmagari N., Shimojima M., Kirikae T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS One. 2013. 8:e66358.
crossref
33.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Document M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute. 2018.

Fig. 1.
REP-PCR patterns of E. cloacae isolates. Lane M 0.05–2.5 kb molecular size marker. Lane 2, 8, 11, 14, 23–25, 30-31, 43, 70: I type. Lane 1, 48–49, 51, 53, 56–57, 59: II type. Lane 33, 37, 61, 63, 65–68: III type. Lane 38–40, 42, 44, 47, 52: IV type. Lane 4, 18–19, 26, 34, 64, 69: V type. Lane 12, 20, 50, 54, 60, 46: VI type. Lane 9–10, 13, 17, 28: VII type. Lane 35–36, 62: VIII type. Lane 3, 22, 32: IX type. Lane 45, 55: X type.
lmo-8-99f1.tif
Table 1.
Sequences of primers for the amplification of the β-lactamase and AmpC genes of Enterobacter cloacae
Primer   Primer sequence (5’–3’) Size Ref
CTXM-1 F CCGTCACGCTGTTGTTAGG 693 26
  R GACGATTTTAGCCGCCGAC    
CTXM-2 F CGGTGCTTAAACAGAGCGAG 684  
  R CCATGAATAAGCAGCTGATTGCCC    
CTXM-8 F ACGCTCAACACCGCGATC 695  
  R CGTGGGTTCTCGGGGATAA    
CTXM-9 F GATTGACCGTATTGGGAGTTT 683  
  R CGGCTGGGTAAAATAGGTCA    
TEM-1 F ATGAGTATTCAACATTTCCGT 997 27
  R TTACCAATGCTTAATCAGTGA    
SHV-12 F CCGGGTTATTCTTATTTGTCGCT 936  
  R TAGCGTTGCCAGTGCTCG    
NDM-1 F GCCCAATATTATGCACCCGG 738 28
  R CTCATCACGATCATGCTGGC    
IMP-1 F AAGGCGTTTATGTTCATACTTCG 605  
  R TTTAACCGCCTGCTCTAATGTAA    
OXA-48 F GATTATCGGAATGCCTGCGG 845  
  R CTACAAGCGCATCGAGCATCA    
IMI-1 F AGAGTTCYATTCACCCATCACA 803 29
  R TCTCCAATCGACCGCATGAA    
VIM-1 F TGGGCCATTCAGCCAGATC 749 31
  R TGGGCCATTCAGCCAGATC    
FOX F AACATGGGGTATCAGGGAGATG 190 32
  R CAAAGCGCGTAACCGGATTGG    
EBC F TCGGTAAAGCCGATGTTGCGG 302  
  R CTTCCACTGCGGCTGCCAGTT    
CIT F TGGCCAGAACTGACGGCAAA 462  
  R TTTCTCCTGAACGTGGCTGGC    
ACC F AACAGCCTCAGCAGCCGGTTA 346  
  R TTCGCCGCAATCATCCCTAGC    
DHA F AACTTTCACAGG TGTGCTGGGT 405  
  R CCGTACGCATACTGGCTTTGC    
MOX F GCTGCTCAAGGAGCACAGGAT 520  
  R CACATTGACATAGGTGTGGTGC    

Abbreviations: F, forward; R, reverse.

Table 2.
Primers for the multilocus sequence typing analysis of En terobacter cloacae
Primer Sequence (5’–3’) Position in the target gene Ref
A dnaA F AYAACCCGCTGTTCCTBTATGGCGGCAC 500–527 33
    R KGCCAGCGCCATCGCCATCTGACGCGG 1222–1248  
  fusA F TCGCGTTCGTTAACAAAATGGACCGTAT 413–440  
    R TCGCCAGACGGCCCAGAGCCAGACCCAT 1291–1318  
  gyrB F TCGACGAAGCGCTCGCGGGTCACTGTAA 143–170  
    R GCAGAACCGCCCGCGGAGTCCCCTTCCA 1268–1295  
  leuS F GATCARCTSCCGGTKATCCTGCCGGAAG 1342–1369  
    R ATAGCCGCAATTGCGGTATTGAAGGTCT 2159–2186  
  pyrG F AYCCBGAYGTBATTGCRCAYMAGGCGAT 56–83  
    R GCRCGRATYTCVCCCTSHTCGTCCCAGC 563–590  
  rplB F GTAAACCGACATCTCCGGGTCGTCGCCA 17–44  
    R ACCTTTGGTCTGAACGCCCCACGGAGTT 735–762  
  rpoB F CCGAACCGTTCCGCGAACATCGCGCTGG 252–280  
    R CCAGCAGATCCAGGCTCAGCTCCATGTT 973–1000  
S gyrB F AAAACCGGTACYATGGTGCGTTTCTGG 484–510  
    R GCAGAACCGCCCGCGGAGTCCCCTTCC 1269–1295  
  fusA R ATCTCTTCACGYTTGTTAGCGTGCATCT 1094–1121  

These primers were used for sequencing respective amplicons. Abbreviations: A, amplification; F, forward; R, reverse; S, sequencing.

Table 3.
Characteristics of multidrug-resistant Enterobacter cloacae isolates based on repetitive element sequence-based polymerase chain reaction and multilocus sequence typing
Isolate Specimen source REP-PCR MLST (STs) ) β-lactamase AmpC GM ETP CT TZ PM CL AT TS
K1 W II 668 NDM-1 . 0.5 0.25 >32 16 0.25 0.064 12 0.064
K2 S I 24 . DHA, EBC 0.5 0.25 >32 16 0.25 0.064 12 0.064
K3 W IX 134 . DHA 1.5 0.064 1 4 0.047 0.38 0.5 0.5
K4 O V 41 . EBC >256 1 >48 >32 24 1.5 128 >32
K5 U . 280 . . 0.5 3 >32 >256 1 0.064 128 0.125
K6 U . . . . 0.5 0.25 >32 32 0.05 0.047 24 0.064
K7 S . 78 . . 0.38 0.75 >32 >256 2 0.047 128 0.125
K8 B I . . . 0.5 0.032 >32 3 16 >32 16 >32
K9 U VII . . . 0.5 0.19 >32 >256 1.5 0.032 24 0.064
K10 O VII 279 . . 0.5 0.125 >32 128 1.5 0.032 16 0.064
K11 O I 45 SHV-12 . 0.05 0.75 >32 >256 2 0.38 64 0.5
K12 U VI 41 . EBC 2 0.25 >32 128 2 1.5 >256 >256
K13 S VII 53 . EBC 0.5 0.38 >32 >256 1 0.47 128 0.064
K14 BF I . . . 0.38 0.5 >32 >256 0.075 0.5 64 0.32
K15 U . 190 . . 0.75 0.008 0.19 0.5 0.064 0.064 0.25 0.064
K17 O VII 245 . . >256 0.032 >32 2 8 0.047 8 0.38
K18 U V 78 . . 1 0.19 1 1 0.75 1.5 0.38 0.25
K19 U V 422 . EBC >256 1 >32 32 48 >32 64 0.25
K20 B VI 133 CTX-M-9 . 0.25 0.19 >32 48 0.38 0.023 24 0.064
K21 N.S . 148 . . 6 0.38 >32 1.5 3 1 2 >32
K22 Ctip IX 244 . . 0.38 0.25 >32 128 1.5 0.047 24 0.094
K23 W I . . . 0.5 0.25 >32 >256 3 0.064 128 0.047
K24 S I 53 CTX-M-9 EBC 0.5 0.19 >32 >256 2 0.32 24 0.064
K25 S I 53 . EBC 4 0.5 >32 256 3 0.75 64 >32
K26 O V 484 . EBC 0.38 0.25 >32 256 1 0.75 96 0.047
K27 S . 584 . . 2.5 0.38 >32 64 0.5 0.047 24 0.094
K28 U VII 550 CTX-M-9 EBC 0.25 0.5 >32 >256 1 0.064 96 0.064
K29 W . . . . 6 1.5 >32 >256 6 4 128 >32
K30 U I 144 . . 1 0.19 >32 >256 1.5 0.032 24 0.064
K31 B I 604 . . 1 1.5 >32 >256 16 0.19 256 0.5
K32 S IX 78 . . 0.5 0.25 >32 >256 2 0.032 32 0.094
K33 W III . . . 0.38 0.047 >32 3 16 24 16 >32
K34 U V 466 . EBC 0.75 0.023 0.5 1 0.38 3 0.25 1.5
K35 U VIII 477 . . 0.75 0.5 >32 16 0.125 0.16 8 0.094
K36 U VIII 477 . . 0.75 0.125 >32 256 0.75 0.047 16 0.125
K37 S III 148 . . 0.5 0.064 >32 >256 0.5 0.047 24 0.094
K38 U IV 114 . . 0.38 0.38 >32 256 4 0.064 48 0.064
K39 S IV 114 SHV-12 EBC 0.38 0.19 >32 >256 3 0.047 48 0.064
K40 S IV 114 . EBC 0.38 0.25 >32 256 4 0.047 48 0.064
K41 BF . . CTX-M-1 EBC 0.5 0.38 >32 >256 4 0.047 48 0.094
K42 S IV 114 . EBC 0.5 0.19 >32 64 0.75 0.064 32 0.064
K43 U I 51 CTX-M-9, SHV-12 . 0.5 0.25 >32 >256 3 0.047 48 0.094
K44 U IV 114 . . 6 0.5 >32 256 3 0.19 48 0.064
K45 S X . CTX-M-9, . 0.5 0.25 >32 >256 3 0.047 48 0.094
        SHV-12                  
K46 BF VI 125 . . 0.5 0.125 >32 64 0.5 0.047 32 0.064
K47 U IV 114 SHV-12 EBC 0.38 0.38 >32 48 0.38 0.032 32 0.047
K48 U II . CTX-M-9, EBC 0.38 0.38 >32 >256 3 0.032 48 0.094
        SHV-12                  
K49 U II 175 CTX-M-9, SHV-12 . 0.5 0.32 0.125 0.19 0.064 0.016 0.047 0.094
K50 S VI 56 SHV-12 . 0.5 0.032 0.19 0.38 0.047 0.016 0.064 0.094
K51 S II 782 . . 0.5 0.023 6 16 0.5 0.125 32 >32
K52 PF IV 114 CTX-M-9 EBC 3 0.25 >32 >256 16 0.75 48 0.094
K53 U II . . . 0.5 0.25 >32 256 3 0.032 32 0.094
K54 U VI . . . 0.5 0.047 0.19 0.25 0.047 0.016 0.047 0.125
K55 S X . . . 0.5 0.008 0.064 0.19 0.047 0.006 0.047 0.064
K56 S II . . . 0.5 0.38 >32 128 0.5 0.064 32 0.125
K57 BW II 51 . . 0.5 0.064 0.75 0.25 0.064 0.023 0.064 0.19
K58 S XI 350 CTX-M-9, . 0.5 0.125 >32 64 2 0.032 24 0.064
        SHV-12                  
K59 U II 175 CTX-M-9, SHV-12 . 0.38 0.094 >32 48 1.5 0.016 24 0.094
K60 S VI 56 SHV-12 . 6 0.19 24 16 0.1 0.19 16 >32
K61 S III 114 . . 6 0.064 >32 32 0.5 0.19 32 >32
K62 O VIII 477 SHV-12 . 0.5 0.25 >32 >256 3 0.32 48 0.094
K63 U III 148 . . 0.5 0.25 >32 256 0.5 0.032 24 0.064
K64 U V 133 . . 0.25 0.75 >32 >256 3 0.064 64 0.064
K65 BF III 24 OXA-48 EBC 128 0.38 >32 32 1 0.023 24 >32
K66 U III 114 . . 0.38 0.004 0.125 0.125 0.032 0.032 0.047 0.047
K67 S III 53 . EBC 12 0.75 >32 64 32 12 128 4
K68 U III 114 . . 0.38 0.19 >32 64 0.75 0.5 48 0.047
K69 U V 61 . . 48 0.19 >32 24 24 >32 48 48
K70 U I 329 . . 0.75 0.19 >32 96 1.5 0.032 24 24

Abbreviations: ATM, aztreonam; B, blood; BF, bile fluid; BW, bronchial wash; CIP, ciprofloxacin; CTX, cefotaxime; Ctip, catheter tip; ETP, ertapenem; GM, gentamicin; NS, nasal swab; O, other; PF, pleural fluid; FEP, cefepime; S, sputum; TS, cotrimoxazole; CAZ, ceftazidime; U, urine; W, wound; “.”, Not detected.

TOOLS
Similar articles