Abstract
Background:
From January 2014 to December 2015, 69 clones of Enterobacter cloacae showing multidrug resistance to six classes of antimicrobial agents were collected from two medical centers in Korea.
Methods:
Minimum inhibitory concentrations were determined using the E-test method, and 17 genes were detected using polymerase chain reaction (PCR). The epidemiological relatedness of the strains was identified using repetitive element sequence-based PCR and multilocus sequence typing.
Results:
The 69 E. cloacae clones produced extended spectrum β lactamase (ESBL) and AmpC and showed multidrug resistance to cefotaxime, ceftazidime, and aztreonam. We identified the following sequence types: ST56 of type VI for ESBL SHV (N=12, 17.4%); ST53, ST114, ST113, and ST550 of types I, IV, VI, and VII, respectively, for CTX-M (N=11, 15.9%); and ST668 of type III for the carbapenemase NDM gene (N=1, 1.5%). The AmpC DHA gene (N=2, 2.89%) was confirmed as ST134, although its type was not identified, whereas EBC (MIR/ACT; N=18, 26.1%) was identified as ST53, ST24, ST41, ST114, ST442, ST446, ST484, and ST550 of types V, I, III, IV, VII, and VI, respectively. The formed subclasses were blaCTX-M-3 and blaCTX-M-22 by CTX-M-1, blaCTX-M-9 and blaCTX-M-125 by CTX-M-9, blaDHA-1 by DHA, and blaMIR-7 and blaACT-15,17,18,25,27,28 by EBC (MIR/ACT).
REFERENCES
1.Sanders WE Jr., Sanders CC. Enterobacter spp.: pathogens poised to fourish at the turn of the century. Clin Microbiol Rev. 1997. 10:220–41.
2.Dalben M., Varkulja G., Basso M., Krebs VL., Gibelli MA., van der Heijden I, et al. Investigation of an outbreak of Enterobacter cloacae in a neonatal unit and review of the literature. J Hosp Infect. 2008. 70:7–14.
3.Fernandez A., Pereira MJ., Suarez JM., Poza M., Trevino M., Villalón P, et al. Emergence in Spain of a multidrug-resistant Enterobacter cloacae clinical isolate producing SFO-1 extended-spectrum beta-lactamase. J Clin Microbiol. 2011. 49:822–8.
4.Hamada Y., Watanabe K., Tatsuya T., Mezaki K., Takeuchi S., Shimizu T, et al. Three cases of IMP-type metallo-β-lactamase-producing Enterobacter cloacae bloodstream infection in Japan. J Infect Chemother. 2013. 19:956–8.
5.Schaberg DR., Culver DH., Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med. 1991. 91:S72–S75.
6.Sirot D., Sirot J., Labia R., Morand A., Courvalin P., Darfeuille-Michaud A, et al. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identifcation of CTX-1, a novel β-lactamase. J Antimicrob Chemother. 1987. 20:323–34.
7.Altschul SF., Gish W., Miller W., Myers EW., Lipman DJ. Basic local alignment search tool. Available from. http://www.ncbi.nlm.nih.gov/BLAST. Accessed.
8.Jolley K. Enterobacter cloacae MLST Databases. Available from. http://pubmlst.org/ecloacae/. Accessed.
9.Park YJ., Park SY., Oh EJ., Park JJ., Lee KY., Woo GJ, et al. Occurrence of extended-spectrum β-lactamases among chromosomal AmpC-producing Enterobacter cloacae, Citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn Microbiol Infect Dis. 2005. 51:265–9.
10.Coudron PE., Moland ES., Sanders CC. Occurrence and detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae at a veterans medical center: seek and you may fnd. J Clin Microbiol. 1997. 35:2593–7.
11.Souna D., Amir AS., Bekhoucha SN., Berrazeg M., Drissi M. Molecular typing and characterization of TEM, SHV, CTX-M, and CMY-2 β-lactamases in Enterobacter cloacae strains isolated in patients and their hospital environment in the west of Algeria. Med Mal Infect. 2014. 44:146–52.
12.Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995. 8:557–84.
13.Jeong SH. Extended-spectrum beta-lactams-resistant gram-negative bacilli. Asian Conf Clin Pathol. 2000. 6:S61–S62.
14.Harada S., Ishii Y., Yamaguchi K. Extended-spectrum beta-lactamases: implications for the clinical laboratory and therapy. Korean J Lab Med. 2008. 28:401–12.
15.Ko CS., Sung JY., Koo SH., Kwon GC., Shin SY., Park JW. Prevalence of extended-spectrum beta-lactamase in Escherichia coli and Klebsiella pneumoniae from Daejeon. Korean J Lab Med. 2007. 27:344–50.
16.Liu SY., Su LH., Yeh YL., Chu C., Lai JC., Chiu CH. Characterization of plasmids encoding CTX-M-3 extened-spectrum β-lactamase from Enterobacteriaceae isolated at a university hospital in Taiwan. Int J Antimicrob Agents. 2007. 29:440–5.
17.Kim CK., Yum JH., Yong D., Jeong SH., Lee K., Chong Y. Detection of CTX-M-type extended-spectrum β-lactamase in clinical isolates of chromosomal AmpC beta-lactamase-producing Enterobacteriaceae from Korea and their molecular characteristics. Korean J Clin Microbiol. 2008. 11:90–7.
18.Baraniak A., Sadowy E., Hryniewicz W., Gniadkowski M. Two different extended-spectrum β-lactamase (ESBLs) in one of the frst ESBL-producing Salmonella isolates in Poland. J Clin Microbiol. 2002. 40:1095–7.
19.Baraniak A., Fiett J., Sulikowska A., Hryniewicz W., Gniadkowski M. Countrywide spread of CTX-M-3 extended-spectrum β-lactamaseproducing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother. 2002. 46:151–9.
20.Yu Y., Ji S., Chen Y., Zhou W., Wei Z., Li L, et al. Resistance of strains producing extended-spectrum β-lactamases and genotype distribution in China. J Infect. 2007. 54:53–7.
21.Author XX. First cases of NDM-1 (New Delhi Metallo-beta-lactamase)-producing carbapenem resistant Enterobacteriaceae in Korea. Available from. http://cdc.go.kr/CDC/cms/content/mobile/52/12552_view.html. Accessed.
22.Jeong SH., Lee KM., Lee J., Bae IK., Kim JS., Kim HS, et al. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis. 2015. 82:70–2.
23.Barnaud G., Arlet G., Danglot C., Philippon A. Cloning and sequencing of the gene encoding the AmpC β-lactamase of Morganella morganii. FEMS Microbiol Lett. 1997. 148:15–20.
24.Poirel L., Guibert M., Girlich D., Naas T., Nordmann P. Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. Antimicrob Agents Chemother. 1999. 43:769–76.
25.Girlich D., Poirel L., Nordmann P. Clonal distribution of multidrug-resis-tant Enterobacter cloacae. Diagn Microbiol Infect Dis. 2015. 81:264–8.
26.Ryoo NH., Kim EC., Hong SG., Park YJ., Lee K., Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
27.Chang FY., Siu LK., Fung CP., Huang MH., Ho M. Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. Antimicrob Agents Chemother. 2001. 45:2407–13.
28.Bae IK., Kang HK., Jang IH., Lee W., Kim K., Kim JO. Detection of carbapenemase in clinical Enterobactereriaceae isolates using the VITEK AST-N202 card. Infect Chemother. 2015. 47:167–74.
29.Huang L., Wang X., Feng Y., Xie Y., Xie L., Zong Z. First identifcation of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann Clin Microbiol Antimicrob. 2015. 14:51.
30.Tato M., Coque TM., Ruíz-Garbajosa P., Pintado V., Cobo J., Sader HS. Complex clonal and plasmid epidemiology in the frst outbreak of Enterobacteriaceae infection involving VIM-1 metallo-β-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007. 45:1171–8.
31.Perez-Perez FJ., Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002. 40:2153–62.
32.Miyoshi-Akiyama T., Hayakawa K., Ohmagari N., Shimojima M., Kirikae T. Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS One. 2013. 8:e66358.
33.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Document M100-S28. Wayne, PA: Clinical and Laboratory Standards Institute. 2018.
Table 1.
Table 2.
Primer | Sequence (5’–3’) | Position in the target gene | Ref | ||
---|---|---|---|---|---|
A | dnaA | F | AYAACCCGCTGTTCCTBTATGGCGGCAC | 500–527∗ | 33 |
R | KGCCAGCGCCATCGCCATCTGACGCGG | 1222–1248∗ | |||
fusA | F | TCGCGTTCGTTAACAAAATGGACCGTAT | 413–440∗ | ||
R | TCGCCAGACGGCCCAGAGCCAGACCCAT | 1291–1318 | |||
gyrB | F | TCGACGAAGCGCTCGCGGGTCACTGTAA | 143–170 | ||
R | GCAGAACCGCCCGCGGAGTCCCCTTCCA | 1268–1295 | |||
leuS | F | GATCARCTSCCGGTKATCCTGCCGGAAG | 1342–1369∗ | ||
R | ATAGCCGCAATTGCGGTATTGAAGGTCT | 2159–2186∗ | |||
pyrG | F | AYCCBGAYGTBATTGCRCAYMAGGCGAT | 56–83∗ | ||
R | GCRCGRATYTCVCCCTSHTCGTCCCAGC | 563–590∗ | |||
rplB | F | GTAAACCGACATCTCCGGGTCGTCGCCA | 17–44∗ | ||
R | ACCTTTGGTCTGAACGCCCCACGGAGTT | 735–762∗ | |||
rpoB | F | CCGAACCGTTCCGCGAACATCGCGCTGG | 252–280∗ | ||
R | CCAGCAGATCCAGGCTCAGCTCCATGTT | 973–1000∗ | |||
S | gyrB | F | AAAACCGGTACYATGGTGCGTTTCTGG | 484–510∗ | |
R | GCAGAACCGCCCGCGGAGTCCCCTTCC | 1269–1295∗ | |||
fusA | R | ATCTCTTCACGYTTGTTAGCGTGCATCT | 1094–1121∗ |
Table 3.
Abbreviations: ATM, aztreonam; B, blood; BF, bile fluid; BW, bronchial wash; CIP, ciprofloxacin; CTX, cefotaxime; Ctip, catheter tip; ETP, ertapenem; GM, gentamicin; NS, nasal swab; O, other; PF, pleural fluid; FEP, cefepime; S, sputum; TS, cotrimoxazole; CAZ, ceftazidime; U, urine; W, wound; “.”, Not detected.