초록
In this article, we review the differences of the brain morphology according to age, sex, and handedness. Age is a well-known factor affecting brain morphology. With aging, progressive reduction of brain volume is driven. Sex also has great effects on brain morphology. Although there are some reports that the differences of brain morphology may originate from the differences of weight between the 2 sexes, studies have demonstrated that there are regional differences even after the correction for weight. Handedness has long been regarded as a behavioral marker of functional asymmetry. Although there have been debates about the ef-fect of handedness on brain morphology, previous well-established studies suggest there are differences in some regions according to handedness. Even with the studies done so far, normal brain morphology is not fully understood. Therefore, studies specific for the each ethnic group and standardized methods are needed to establish a more reliable database of healthy subjects’ brain morphology.
REFERENCES
1.Carper RA., Treiber JM., DeJesus SY., Müller RA. Reduced hemispher-ic asymmetry of white matter microstructure in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2016. 55:1073–1080.
2.Lai MC., Lerch JP., Floris DL., Ruigrok AN., Pohl A., Lombardo MV, et al. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res. 2017. 95:380–397.
3.DeMyer MK., Gilmor RL., Hendrie HC., DeMyer WE., Augustyn GT., Jackson RK. Magnetic resonance brain images in schizophren-ic and normal subjects: influence of diagnosis and education. Schizophr Bull. 1988. 14:21–37.
4.Shenton ME., Dickey CC., Frumin M., McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001. 49:1–52.
5.Squarzoni P., Tamashiro-Duran J., Souza Duran FL., Santos LC., Val-lada HP., Menezes PR, et al. Relationship between regional brain volumes and cognitive performance in the healthy aging: an MRI study using voxel-based morphometry. J Alzheimers Dis. 2012. 31:45–58.
6.Good CD., Johnsrude I., Ashburner J., Henson RN., Friston KJ., Fracko-wiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 2001. 14:685–700.
7.Madden DJ., Whiting WL., Huettel SA., White LE., MacFall JR., Proven-zale JM. Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage. 2004. 21:1174–1181.
8.Marstaller L., Williams M., Rich A., Savage G., Burianová H. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience. 2015. 290:369–378.
9.Feldman HM., Yeatman JD., Lee ES., Barde LH., Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clini-cians. J Dev Behav Pediatr. 2010. 31:346–356.
10.Alexander AL., Lee JE., Lazar M., Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007. 4:316–329.
11.Jernigan TL., Archibald SL., Berhow MT., Sowell ER., Foster DS., Hes-selink JR. Cerebral structure on MRI, Part I: Localization of age-relat-ed changes. Biol Psychiatry. 1991. 29:55–67.
12.Resnick SM., Pham DL., Kraut MA., Zonderman AB., Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003. 23:3295–3301.
13.Curiati PK., Tamashiro JH., Squarzoni P., Duran FL., Santos LC., Wajn-garten M, et al. Brain structural variability due to aging and gender in cognitively healthy Elders: results from the Sao Paulo Ageing and Health study. AJNR Am J Neuroradiol. 2009. 30:1850–1856.
14.Grieve SM., Clark CR., Williams LM., Peduto AJ., Gordon E. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp. 2005. 25:391–401.
15.Fama R., Sullivan EV. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev. 2015. 54:29–37.
16.Hughes EJ., Bond J., Svrckova P., Makropoulos A., Ball G., Sharp DJ, et al. Regional changes in thalamic shape and volume with increas-ing age. Neuroimage. 2012. 63:1134–1142.
17.Abe O., Yamasue H., Aoki S., Suga M., Yamada H., Kasai K, et al. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging. 2008. 29:102–116.
18.Amunts K., Jäncke L., Mohlberg H., Steinmetz H., Zilles K. Interhemi-spheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia. 2000. 38:304–312.
19.Ardekani BA., Figarsky K., Sidtis JJ. Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb Cortex. 2013. 23:2514–2520.
20.Lüders E., Steinmetz H., Jäncke L. Brain size and grey matter volume in the healthy human brain. Neuroreport. 2002. 13:2371–2374.
21.Sacher J., Neumann J., Okon-Singer H., Gotowiec S., Villringer A. Sexual dimorphism in the human brain: evidence from neuroim-aging. Magn Reson Imaging. 2013. 31:366–375.
22.Abe O., Yamasue H., Yamada H., Masutani Y., Kabasawa H., Sasaki H, et al. Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed. 2010. 23:446–458.
23.Narr KL., Bilder RM., Luders E., Thompson PM., Woods RP., Robinson D, et al. Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage. 2007. 34:939–948.
24.DeLacoste-Utamsing C., Holloway RL. Sexual dimorphism in the human corpus callosum. Science. 1982. 216:1431–1432.
25.Luders E., Toga AW., Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum. Neuroimage. 2014. 84:820–824.
26.Perlaki G., Orsi G., Plozer E., Altbacker A., Darnai G., Nagy SA, et al. Are there any gender differences in the hippocampus volume after head-size correction? A volumetric and voxel-based morphomet-ric study. Neurosci Lett. 2014. 570:119–123.
27.Tan A., Ma W., Vira A., Marwha D., Eliot L. The human hippocampus is not sexually-dimorphic: meta-analysis of structural MRI volumes. Neuroimage. 2016. 124(Pt A):350–366.
28.Xie Y., Chen YA., De Bellis MD. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and ado-lescents: a magnetic resonance imaging volumetric study. J Child Neurol. 2012. 27:325–331.
29.Habib M., Gayraud D., Oliva A., Regis J., Salamon G., Khalil R. Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn. 1991. 16:41–61.
30.Guadalupe T., Willems RM., Zwiers MP., Arias Vasquez A., Hoogman M., Hagoort P, et al. Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol. 2014. 5:261.
31.Ocklenburg S., Friedrich P., Güntürkün O., Genç E. Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett. 2016. 633:210–214.
32.Annett M. A classification of hand preference by association analysis. Br J Psychol. 1970. 61:303–321.
33.Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 197;9. 97–113.
34.Fazio R., Coenen C., Denney RL. The original instructions for the Edinburgh Handedness Inventory are misunderstood by a majority of participants. Laterality. 2012. 17:70–77.
35.Edlin JM., Leppanen ML., Fain RJ., Hackländer RP., Hanaver-Torrez SD., Lyle KB. On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn. 2015. 94:44–51.
36.Verdino M., Dingman S. Two measures of laterality in handedness: the Edinburgh Handedness Inventory and the Purdue Pegboard test of manual dexterity. Percept Mot Skills. 1998. 86:476–478.
37.Amunts K., Schlaug G., Schleicher A., Steinmetz H., Dabringhaus A., Roland PE, et al. Asymmetry in the human motor cortex and handedness. Neuroimage. 1996. 4(3 Pt 1):216–222.
38.Hervé PY., Crivello F., Perchey G., Mazoyer B., Tzourio-Mazoyer N. Handedness and cerebral anatomical asymmetries in young adult males. Neuroimage. 2006. 29:1066–1079.
39.Foundas AL., Leonard CM., Heilman KM. Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch Neurol. 1995. 52:501–508.
40.Anstey KJ., Maller JJ., Meslin C., Christensen H., Jorm AF., Wen W, et al. Hippocampal and amygdalar volumes in relation to handedness in adults aged 60-64. Neuroreport. 2004. 15:2825–2829.
41.Ifthikharuddin SF., Shrier DA., Numaguchi Y., Tang X., Ning R., Shibata DK, et al. MR volumetric analysis of the human basal ganglia: nor-mative data. Acad Radiol. 2000. 7:627–634.
42.Peterson BS., Riddle MA., Cohen DJ., Katz LD., Smith JC., Leckman JF. Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging. 1993. 11:493–498.
43.Gunning-Dixon FM., Head D., McQuain J., Acker JD., Raz N. Differen-tial aging of the human striatum: a prospective MR imaging study. AJNR Am J Neuroradiol. 1998. 19:1501–1507.
44.Kavaklioglu T., Guadalupe T., Zwiers M., Marquand AF., Onnink M., Shumskaya E, et al. Structural asymmetries of the human cerebel-lum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct. 2017. 222:1611–1623.
45.Büchel C., Raedler T., Sommer M., Sach M., Weiller C., Koch MA. White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex. 2004. 14:945–951.