Journal List > Ann Clin Neurophysiol > v.19(2) > 1099511

Kang, Kang, Jang, Lee, Lee, Kwoen, Kim, and Park: Brain morphology according to age, sex, and handedness

초록

In this article, we review the differences of the brain morphology according to age, sex, and handedness. Age is a well-known factor affecting brain morphology. With aging, progressive reduction of brain volume is driven. Sex also has great effects on brain morphology. Although there are some reports that the differences of brain morphology may originate from the differences of weight between the 2 sexes, studies have demonstrated that there are regional differences even after the correction for weight. Handedness has long been regarded as a behavioral marker of functional asymmetry. Although there have been debates about the ef-fect of handedness on brain morphology, previous well-established studies suggest there are differences in some regions according to handedness. Even with the studies done so far, normal brain morphology is not fully understood. Therefore, studies specific for the each ethnic group and standardized methods are needed to establish a more reliable database of healthy subjects’ brain morphology.

REFERENCES

1.Carper RA., Treiber JM., DeJesus SY., Müller RA. Reduced hemispher-ic asymmetry of white matter microstructure in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2016. 55:1073–1080.
crossref
2.Lai MC., Lerch JP., Floris DL., Ruigrok AN., Pohl A., Lombardo MV, et al. Imaging sex/gender and autism in the brain: etiological implications. J Neurosci Res. 2017. 95:380–397.
crossref
3.DeMyer MK., Gilmor RL., Hendrie HC., DeMyer WE., Augustyn GT., Jackson RK. Magnetic resonance brain images in schizophren-ic and normal subjects: influence of diagnosis and education. Schizophr Bull. 1988. 14:21–37.
crossref
4.Shenton ME., Dickey CC., Frumin M., McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001. 49:1–52.
crossref
5.Squarzoni P., Tamashiro-Duran J., Souza Duran FL., Santos LC., Val-lada HP., Menezes PR, et al. Relationship between regional brain volumes and cognitive performance in the healthy aging: an MRI study using voxel-based morphometry. J Alzheimers Dis. 2012. 31:45–58.
crossref
6.Good CD., Johnsrude I., Ashburner J., Henson RN., Friston KJ., Fracko-wiak RS. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage. 2001. 14:685–700.
crossref
7.Madden DJ., Whiting WL., Huettel SA., White LE., MacFall JR., Proven-zale JM. Diffusion tensor imaging of adult age differences in cerebral white matter: relation to response time. Neuroimage. 2004. 21:1174–1181.
crossref
8.Marstaller L., Williams M., Rich A., Savage G., Burianová H. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience. 2015. 290:369–378.
crossref
9.Feldman HM., Yeatman JD., Lee ES., Barde LH., Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clini-cians. J Dev Behav Pediatr. 2010. 31:346–356.
crossref
10.Alexander AL., Lee JE., Lazar M., Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007. 4:316–329.
crossref
11.Jernigan TL., Archibald SL., Berhow MT., Sowell ER., Foster DS., Hes-selink JR. Cerebral structure on MRI, Part I: Localization of age-relat-ed changes. Biol Psychiatry. 1991. 29:55–67.
crossref
12.Resnick SM., Pham DL., Kraut MA., Zonderman AB., Davatzikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003. 23:3295–3301.
crossref
13.Curiati PK., Tamashiro JH., Squarzoni P., Duran FL., Santos LC., Wajn-garten M, et al. Brain structural variability due to aging and gender in cognitively healthy Elders: results from the Sao Paulo Ageing and Health study. AJNR Am J Neuroradiol. 2009. 30:1850–1856.
14.Grieve SM., Clark CR., Williams LM., Peduto AJ., Gordon E. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp. 2005. 25:391–401.
crossref
15.Fama R., Sullivan EV. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci Biobehav Rev. 2015. 54:29–37.
crossref
16.Hughes EJ., Bond J., Svrckova P., Makropoulos A., Ball G., Sharp DJ, et al. Regional changes in thalamic shape and volume with increas-ing age. Neuroimage. 2012. 63:1134–1142.
crossref
17.Abe O., Yamasue H., Aoki S., Suga M., Yamada H., Kasai K, et al. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging. 2008. 29:102–116.
crossref
18.Amunts K., Jäncke L., Mohlberg H., Steinmetz H., Zilles K. Interhemi-spheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia. 2000. 38:304–312.
crossref
19.Ardekani BA., Figarsky K., Sidtis JJ. Sexual dimorphism in the human corpus callosum: an MRI study using the OASIS brain database. Cereb Cortex. 2013. 23:2514–2520.
crossref
20.Lüders E., Steinmetz H., Jäncke L. Brain size and grey matter volume in the healthy human brain. Neuroreport. 2002. 13:2371–2374.
crossref
21.Sacher J., Neumann J., Okon-Singer H., Gotowiec S., Villringer A. Sexual dimorphism in the human brain: evidence from neuroim-aging. Magn Reson Imaging. 2013. 31:366–375.
crossref
22.Abe O., Yamasue H., Yamada H., Masutani Y., Kabasawa H., Sasaki H, et al. Sex dimorphism in gray/white matter volume and diffusion tensor during normal aging. NMR Biomed. 2010. 23:446–458.
crossref
23.Narr KL., Bilder RM., Luders E., Thompson PM., Woods RP., Robinson D, et al. Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage. 2007. 34:939–948.
crossref
24.DeLacoste-Utamsing C., Holloway RL. Sexual dimorphism in the human corpus callosum. Science. 1982. 216:1431–1432.
crossref
25.Luders E., Toga AW., Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum. Neuroimage. 2014. 84:820–824.
26.Perlaki G., Orsi G., Plozer E., Altbacker A., Darnai G., Nagy SA, et al. Are there any gender differences in the hippocampus volume after head-size correction? A volumetric and voxel-based morphomet-ric study. Neurosci Lett. 2014. 570:119–123.
crossref
27.Tan A., Ma W., Vira A., Marwha D., Eliot L. The human hippocampus is not sexually-dimorphic: meta-analysis of structural MRI volumes. Neuroimage. 2016. 124(Pt A):350–366.
crossref
28.Xie Y., Chen YA., De Bellis MD. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and ado-lescents: a magnetic resonance imaging volumetric study. J Child Neurol. 2012. 27:325–331.
crossref
29.Habib M., Gayraud D., Oliva A., Regis J., Salamon G., Khalil R. Effects of handedness and sex on the morphology of the corpus callosum: a study with brain magnetic resonance imaging. Brain Cogn. 1991. 16:41–61.
crossref
30.Guadalupe T., Willems RM., Zwiers MP., Arias Vasquez A., Hoogman M., Hagoort P, et al. Differences in cerebral cortical anatomy of left- and right-handers. Front Psychol. 2014. 5:261.
crossref
31.Ocklenburg S., Friedrich P., Güntürkün O., Genç E. Voxel-wise grey matter asymmetry analysis in left- and right-handers. Neurosci Lett. 2016. 633:210–214.
crossref
32.Annett M. A classification of hand preference by association analysis. Br J Psychol. 1970. 61:303–321.
crossref
33.Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 197;9. 97–113.
34.Fazio R., Coenen C., Denney RL. The original instructions for the Edinburgh Handedness Inventory are misunderstood by a majority of participants. Laterality. 2012. 17:70–77.
crossref
35.Edlin JM., Leppanen ML., Fain RJ., Hackländer RP., Hanaver-Torrez SD., Lyle KB. On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn. 2015. 94:44–51.
crossref
36.Verdino M., Dingman S. Two measures of laterality in handedness: the Edinburgh Handedness Inventory and the Purdue Pegboard test of manual dexterity. Percept Mot Skills. 1998. 86:476–478.
crossref
37.Amunts K., Schlaug G., Schleicher A., Steinmetz H., Dabringhaus A., Roland PE, et al. Asymmetry in the human motor cortex and handedness. Neuroimage. 1996. 4(3 Pt 1):216–222.
crossref
38.Hervé PY., Crivello F., Perchey G., Mazoyer B., Tzourio-Mazoyer N. Handedness and cerebral anatomical asymmetries in young adult males. Neuroimage. 2006. 29:1066–1079.
crossref
39.Foundas AL., Leonard CM., Heilman KM. Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch Neurol. 1995. 52:501–508.
40.Anstey KJ., Maller JJ., Meslin C., Christensen H., Jorm AF., Wen W, et al. Hippocampal and amygdalar volumes in relation to handedness in adults aged 60-64. Neuroreport. 2004. 15:2825–2829.
41.Ifthikharuddin SF., Shrier DA., Numaguchi Y., Tang X., Ning R., Shibata DK, et al. MR volumetric analysis of the human basal ganglia: nor-mative data. Acad Radiol. 2000. 7:627–634.
crossref
42.Peterson BS., Riddle MA., Cohen DJ., Katz LD., Smith JC., Leckman JF. Human basal ganglia volume asymmetries on magnetic resonance images. Magn Reson Imaging. 1993. 11:493–498.
crossref
43.Gunning-Dixon FM., Head D., McQuain J., Acker JD., Raz N. Differen-tial aging of the human striatum: a prospective MR imaging study. AJNR Am J Neuroradiol. 1998. 19:1501–1507.
44.Kavaklioglu T., Guadalupe T., Zwiers M., Marquand AF., Onnink M., Shumskaya E, et al. Structural asymmetries of the human cerebel-lum in relation to cerebral cortical asymmetries and handedness. Brain Struct Funct. 2017. 222:1611–1623.
crossref
45.Büchel C., Raedler T., Sommer M., Sach M., Weiller C., Koch MA. White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex. 2004. 14:945–951.
crossref
46.McKay NS., Iwabuchi SJ., Häberling IS., Corballis MC., Kirk IJ. Atypical white matter microstructure in left-handed individuals. Laterality. 2017. 22:257–267.
crossref
47.Cherubini A., Péran P., Caltagirone C., Sabatini U., Spalletta G. Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. Neuroimage. 2009. 48:29–36.
crossref

Table 1.
Studies about the relationship between aging and brain morphology
Authors Brain region Age related results
Jernigan et al. (1991)11 Anterior cingulate cortex No significant associations to age
Resnick et al. (2003)12 GM, WM, total brain GM: 3.1 cm3 decline annually
    WM: 2.4 cm3 decline annually
    Total brain: 5.4 cm3 decline annually
Grieve et al. (2005)14 Cerebral cortex Limbic structure Accelerated loss in dorsolateral frontal cortex, pre- and post-central gyrus, and inferior and superior parietal lobes
  Paralimbic structure No significant associations to age in limbic and paralimbic structures
Abe et al. (2008)17 Globus pallidus No significant associations to age
Cherubini et al. (2009)47 Basal ganglia Decreased volume of putamen and caudate nucleus
Hughes et al. (2012)16 Thalamus Decreased, with anterior regions generally more compromised than posterior regions

GM, gray matter; WM, white matter.

Table 2.
Studies about the relationship between sex and brain morphology
Authors Brain region Sex related results
DeLacoste-Utamsing et al. (1982)24 Corpus callosum Longer in females
Good et al. (2001)6 GM Bigger GM volume and GM volume/ICV in males
Abe et al. (2010)22 WM Bigger WM volume in males
    Bigger WM volume/ICV in females
Xie et al. (2012)28 Brainstem Bigger brainstem volume in males, no significant difference in brainstem volume/ICV
  Thalamus Bigger thalamus in males, bigger thalamus volume/GM volume in females, rightward asymmetry more prominent in females
Sacher et al. (2013)21 Total brain Bigger total brain volume in males after correction for body volume
Ardekani et al. (2013)19 Corpus callosum Bigger CCA in females after correction for brain volume and age
Luders et al. (2014)25 Corpus callosum No significant associations to sex
Perlaki et al. (2014)26 Hippocampus No signification associations to sex after correction for brain volume
Tan et al. (2016)27 Hippocampus Bigger hippocampus volume in males

GM, gray matter; ICV, intracranial volume; WM, white matter; CCA, corpus callosum cross-sectional area.

Table 3.
Studies about the relationship between handedness and brain morphology
Authors Brain region Handedness related results
Habib et al. (1991)29 Corpus callosum Smaller in right-handers especially in its anterior half than in left-handers
Peterson et al. (1993)42 Basal ganglia Bigger total basal ganglia volume in left hemisphere than right in right-handers; bigge globus pallidus, putamen on the left, bigger caudate nuclei on the right
    No asymmetries in left-handers
Foundas et al. (1995)39 Pars triangularis Leftward asymmetry of pars triangularis and planum temporale in right-handers
  Planum temporale No asymmetries in left-handers
Amunts et al. (2000)18 Central sulcus Deeper central sulcus on left hemisphere than on right in male right-handers
Ifthikharuddin et al. (2000)41 Basal ganglia Bigger caudate nucleus in right hemisphere than in left in both right-handers and lef handers
    Bigger putamen in right hemisphere than left in left-handers
Good et al. (2001)6 GM, WM No significant associations to handedness
Büchel et al. (2004)45 WM Higher FA in WM underneath precentral gyrus in right hemisphere than in left in lef handers, while higher FA in left hemisphere in right-handers
Anstey et al. (2004)40 Hippocampus Bigger hippocampus in female left-handers than in female right-handers
  Amygdala No significant associations to handedness in amygdala
Hervé et al. (2006)38 Inferior frontal sulcus Precentral sulcus Leftward asymmetry of inferior frontal sulcus and precentral sulcus in right-handers, an no asymmetry or rightward asymmetry in left-handers
  Planum temporale Leftward asymmetry of planum temporale in right-handers while no asymmetry in lef handers
Mckay et al. (2017)46 WM Higher FA in anterior corpus callosum and frontal cortex in left-handers than in righ handers
Kavaklioglu et al. (2017)44 Cerebellum No significant associations to handedness
Ocklenburg et al. (2016)31 GM No significant associations to handedness

GM, gray matter; WM, white matter; FA, fractional anisotropy.

TOOLS
Similar articles