Journal List > Ann Clin Neurophysiol > v.19(2) > 1099510

Pyun and Kim: Paraproteinemic neuropathy

초록

Paraproteinemia is caused by a proliferation of monoclonal plasma cells or B lymphocytes. Approximately 10% of idiopathic neuropathies are associated with paraproteinemia, where a certain paraprotein acts like an antibody targeted at constituents of myelin or axolemma in peripheral nerves. The relationship between paraproteinemia and peripheral neuropathy remains unclear despite this being of interest for a long time. Neurologists frequently find paraproteinemia during laboratory examinations of patients presenting with peripheral neuropathy, especially in the elderly. The possibility of a relationship with paraproteinemia should be considered in cases without an explainable cause. We review the causal association between paraproteinemia and neuropathy as well as clinical, laboratory, and electrophysiologic features, and the treatment options for paraproteinemic neuropathy.

REFERENCES

1.Saleun JP., Vicariot M., Deroff P., Morin JF. Monoclonal gammopathies in the adult population of Finistère, France. J Clin Pathol. 1982. 35:63–68.
2.Kelly JJ Jr., Kyle RA., O’Brien PC., Dyck PJ. Prevalence of monoclonal protein in peripheral neuropathy. Neurology. 1981. 31:1480–1483.
crossref
3.Ramchandren S., Lewis RA. An update on monoclonal gammopathy and neuropathy. Curr Neurol Neurosci Rep. 2012. 12:102–110.
crossref
4.Kelly JJ Jr. Peripheral neuropathies associated with monoclonal proteins: a clinical review. Muscle Nerve. 1985. 8:138–150.
crossref
5.Joint Task Force of the EFNS., the PNS. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society--first revision. J Peripher Nerv Syst. 2010. 15:185–195.
6.England JD., Gronseth GS., Franklin G., Carter GT., Kinsella LJ., Cohen JA, et al. Practice parameter: the evaluation of distal symmetric polyneuropathy: the role of laboratory and genetic testing (an evidence-based review). Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. PM R. 2009. 1:5–13.
7.Kyle RA. Osteosclerotic Myeloma. Kelly JJ, Kyle RA, Latov N, editors. Polyneuropathies associated with plasma cell dyscrasias. Topics in the Neurosciences. Vol. 5. Boston: Springer;1987. p. 91–103.
crossref
8.Raheja D., Specht C., Simmons Z. Paraproteinemic neuropathies. Muscle Nerve. 2015. 51:1–13.
crossref
9.Berenson JR., Anderson KC., Audell RA., Boccia RV., Coleman M., Di-mopoulos MA, et al. Monoclonal gammopathy of undetermined significance: a consensus statement. Br J Haematol. 2010. 150:28–38.
crossref
10.Kyle RA. Monoclonal gammopathy of undetermined significance and solitary plasmacytoma. Implications for progression to overt multiple myeloma. Hematol Oncol Clin North Am. 1997. 11:71–87.
11.Landgren O. Monoclonal gammopathy of undetermined significance and smoldering myeloma: new insights into pathophys-iology and epidemiology. Hematology Am Soc Hematol Educ Program. 2010. 2010:295–302.
crossref
12.Rajkumar SV., Kyle RA., Therneau TM., Melton LJ 3rd., Bradwell AR., Clark RJ, et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood. 2005. 106:812–817.
crossref
13.van de Poel MH., Coebergh JW., Hillen HF. Malignant transformation of monoclonal gammopathy of undetermined significance among out-patients of a community hospital in southeastern Netherlands. Br J Haematol. 1995. 91:121–125.
crossref
14.Vuckovic J., Ilic A., Knezevic N., Marinkovic M., Zemunik T., Dubravcic M. Prognosis in monoclonal gammopathy of undetermined significance. Br J Haematol. 1997. 97:649–651.
crossref
15.Gosselin S., Kyle RA., Dyck PJ. Neuropathy associated with monoclonal gammopathies of undetermined significance. Ann Neurol. 1991. 30:54–61.
crossref
16.Katz JS., Saperstein DS., Gronseth G., Amato AA., Barohn RJ. Distal acquired demyelinating symmetric neuropathy. Neurology. 2000. 54:615–620.
crossref
17.Nobile-Orazio E., Manfredini E., Carpo M., Meucci N., Monaco S., Ferrari S, et al. Frequency and clinical correlates of anti-neural IgM antibodies in neuropathy associated with IgM monoclonal gammopathy. Ann Neurol. 1994. 36:416–424.
crossref
18.Gorson KC. Clinical features, evaluation, and treatment of patients with polyneuropathy associated with monoclonal gammopathy of undetermined significance (MGUS). J Clin Apher. 1999. 14:149–153.
crossref
19.Silberman J., Lonial S. Review of peripheral neuropathy in plasma cell disorders. Hematol Oncol. 2008. 26:55–65.
crossref
20.Benedetti L., Briani C., Franciotta D., Carpo M., Padua L., Zara G, et al. Long-term effect of rituximab in anti-mag polyneuropathy. Neurology. 2008. 71:1742–1744.
crossref
21.Yeung KB., Thomas PK., King RH., Waddy H., Will RG., Hughes RA, et al. The clinical spectrum of peripheral neuropathies associated with benign monoclonal IgM, IgG and IgA paraproteinaemia. Compar-ative clinical, immunological and nerve biopsy findings. J Neurol. 1991. 238:383–391.
22.Rajabally YA. Neuropathy and paraproteins: review of a complex association. Eur J Neurol. 2011. 18:1291–1298.
crossref
23.Nobile-Orazio E., Meucci N., Baldini L., Di Troia A., Scarlato G. Long-term prognosis of neuropathy associated with anti-MAG IgM M-proteins and its relationship to immune therapies. Brain. 2000. 123( Pt 4):710–717.
crossref
24.Chassande B., Léger JM., Younes-Chennoufi AB., Benqoufa D., Maisonobe T., Bouche P, et al. Peripheral neuropathy associated with IgM monoclonal gammopathy: correlations between M-protein antibody activity and clinical/electrophysiological features in 40 cases. Muscle Nerve. 1998. 21:55–62.
crossref
25.Franssen H., Straver DC. Pathophysiology of immune-mediated demyelinating neuropathies--part II: neurology. Muscle Nerve. 2014. 49:4–20.
crossref
26.Attarian S., Azulay JP., Boucraut J., Escande N., Pouget J. Terminal latency index and modified F ratio in distinction of chronic demyelinating neuropathies. Clin Neurophysiol. 2001. 112:457–463.
crossref
27.Steck AJ., Stalder AK., Renaud S. Anti-myelin-associated glycopro-tein neuropathy. Curr Opin Neurol. 2006. 19:458–463.
crossref
28.Lombardi R., Erne B., Lauria G., Pareyson D., Borgna M., Morbin M, et al. IgM deposits on skin nerves in anti-myelin-associated glycopro-tein neuropathy. Ann Neurol. 2005. 57:180–187.
crossref
29.Lunn MP., Crawford TO., Hughes RA., Griffin JW., Sheikh KA. Anti-my-elin-associated glycoprotein antibodies alter neurofilament spac-ing. Brain. 2002. 125(Pt 4):904–911.
crossref
30.Dalakas MC., Quarles RH., Farrer RG., Dambrosia J., Soueidan S., Stein DP, et al. A controlled study of intravenous immunoglobulin in demyelinating neuropathy with IgM gammopathy. Ann Neurol. 1996. 40:792–795.
crossref
31.Comi G., Roveri L., Swan A., Willison H., Bojar M., Illa I, et al. A randomised controlled trial of intravenous immunoglobulin in IgM paraprotein associated demyelinating neuropathy. J Neurol. 2002. 249:1370–1377.
crossref
32.Lunn MP., Nobile-Orazio E. Immunotherapy for IgM anti-myelin-as-sociated glycoprotein paraprotein-associated peripheral neuropathies. Cochrane Database Syst Rev. 2012. 16:CD002827.
crossref
33.Mariette X., Chastang C., Clavelou P., Louboutin JP., Leger JM., Brouet JC. A randomised clinical trial comparing interferon-alpha and intravenous immunoglobulin in polyneuropathy associated with monoclonal IgM. The IgM-associated Polyneuropathy Study Group. J Neurol Neurosurg Psychiatry. 1997. 63:28–34.
34.Mariette X., Brouet JC., Chevret S., Leger JM., Clavelou P., Pouget J, et al. A randomised double blind trial versus placebo does not con-firm the benefit of alpha-interferon in polyneuropathy associated with monoclonal IgM. J Neurol Neurosurg Psychiatry. 2000. 69:279–280.
35.Oksenhendler E., Chevret S., Léger JM., Louboutin JP., Bussel A., Brouet JC. Plasma exchange and chlorambucil in polyneuropathy associated with monoclonal IgM gammopathy. IgM-associated Polyneuropathy Study Group. J Neurol Neurosurg Psychiatry. 1995. 59:243–247.
crossref
36.Niermeijer JM., Eurelings M., van der Linden MW., Lokhorst HM., Franssen H., Fischer K, et al. Intermittent cyclophosphamide with prednisone versus placebo for polyneuropathy with IgM monoclonal gammopathy. Neurology. 2007. 69:50–59.
crossref
37.Dalakas MC., Rakocevic G., Salajegheh M., Dambrosia JM., Hahn AF., Raju R, et al. Placebo-controlled trial of rituximab in IgM anti-my-elin-associated glycoprotein antibody demyelinating neuropathy. Ann Neurol. 2009. 65:286–293.
crossref
38.Iancu Ferfoglia R., Guimarães-Costa R., Viala K., Musset L., Neil J., Marin B, et al. Long-term efficacy of rituximab in IgM anti-myelin-associ-ated glycoprotein neuropathy: RIMAG follow-up study. J Peripher Nerv Syst. 2016. 21:10–14.
crossref
39.Pestronk A., Florence J., Miller T., Choksi R., Al-Lozi MT., Levine TD. Treatment of IgM antibody associated polyneuropathies using rituximab. J Neurol Neurosurg Psychiatry. 2003. 74:485–489.
crossref
40.Niermeijer JM., Eurelings M., Lokhorst HL., van der Pol WL., Franssen H., Wokke JH, et al. Rituximab for polyneuropathy with IgM monoclonal gammopathy. J Neurol Neurosurg Psychiatry. 2009. 80:1036–1039.
crossref
41.Magy L., Chassande B., Maisonobe T., Bouche P., Vallat JM., Léger JM. Polyneuropathy associated with IgG/IgA monoclonal gammopathy: a clinical and electrophysiological study of 15 cases. Eur J Neurol. 2003. 10:677–685.
crossref
42.Gorson KC., Ropper AH. Axonal neuropathy associated with monoclonal gammopathy of undetermined significance. J Neurol Neurosurg Psychiatry. 1997. 63:163–168.
crossref
43.Di Troia A., Carpo M., Meucci N., Pellegrino C., Allaria S., Gemignani F, et al. Clinical features and anti-neural reactivity in neuropathy associated with IgG monoclonal gammopathy of undetermined significance. J Neurol Sci. 1999. 164:64–71.
crossref
44.Hermosilla E., Lagueny A., Vital C., Vital A., Ferrer X., Steck A, et al. Peripheral neuropathy associated with monoclonal IgG of undetermined significance: clinical, electrophysiologic, pathologic and therapeutic study of 14 cases. J Peripher Nerv Syst. 1996. 1:139–148.
45.Nobile-Orazio E., Carpo M. Neuropathy and monoclonal gammopathy. Curr Opin Neurol. 2001. 14:615–620.
crossref
46.Vallat JM., Jauberteau MO., Bordessoule D., Yardin C., Preux PM., Couratier P. Link between peripheral neuropathy and monoclonal dysglobulinemia: a study of 66 cases. J Neurol Sci. 1996. 137:124–130.
crossref
47.Wicklund MP., Kissel JT. Paraproteinemic neuropathy. Curr Treat Options Neurol. 2001. 3:147–156.
crossref
48.Saperstein DS., Katz JS., Amato AA., Barohn RJ. Clinical spectrum of chronic acquired demyelinating polyneuropathies. Muscle Nerve. 2001. 24:311–324.
crossref
49.Dyck PJ., Low PA., Windebank AJ., Jaradeh SS., Gosselin S., Bourque P, et al. Plasma exchange in polyneuropathy associated with monoclonal gammopathy of undetermined significance. N Engl J Med. 1991. 325:1482–1486.
crossref
50.Stork AC., Lunn MP., Nobile-Orazio E., Notermans NC. Treatment for IgG and IgA paraproteinaemic neuropathy. Cochrane Database Syst Rev. 2015. (3):CD005376.
crossref
51.Mauermann ML. Paraproteinemic neuropathies. Continuum (Minneap Minn). 2014. 20(5 Peripheral Nervous System Disor-ders):1307–1322.
crossref
52.Sobol U., Stiff P. Neurologic aspects of plasma cell disorders. Handb Clin Neurol. 2014. 120:1083–1099.
crossref
53.Chaudhry V., Cornblath DR., Polydefkis M., Ferguson A., Borrello I. Characteristics of bortezomib and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst. 2008. 13:275–282.
crossref
54.Richardson PG., Delforge M., Beksac M., Wen P., Jongen JL., Sezer O, et al. Management of treatment-emergent peripheral neuropathy in multiple myeloma. Leukemia. 2012. 26:595–608.
crossref
55.Walsh JC. The neuropathy of multiple myeloma. An electrophysiological and histological study. Arch Neurol. 1971. 25:404–414.
56.Kelly JJ Jr. The electrodiagnostic findings in peripheral neuropathy associated with monoclonal gammopathy. Muscle Nerve. 1983. 6:504–509.
crossref
57.Ohi T., Kyle RA., Dyck PJ. Axonal attenuation and secondary segmental demyelination in myeloma neuropathies. Ann Neurol. 1985. 17:255–261.
crossref
58.Richardson PG., Xie W., Mitsiades C., Chanan-Khan AA., Lonial S., Hassoun H, et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol. 2009. 27:3518–3525.
crossref
59.Briani C., Torre CD., Campagnolo M., Lucchetta M., Berno T., Candiot-to L, et al. Lenalidomide in patients with chemotherapy-induced polyneuropathy and relapsed or refractory multiple myeloma: results from a single-centre prospective study. J Peripher Nerv Syst. 2013. 18:19–24.
crossref
60.Dispenzieri A. POEMS syndrome: update on diagnosis, risk-stratifi-cation, and management. Am J Hematol. 2015. 90:951–962.
crossref
61.Dispenzieri A. POEMS syndrome: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol. 2011. 86:591–601.
crossref
62.Dispenzieri A., Kyle RA., Lacy MQ., Rajkumar SV., Therneau TM., Larson DR, et al. POEMS syndrome: definitions and long-term outcome. Blood. 2003. 101:2496–2506.
crossref
63.Nasu S., Misawa S., Sekiguchi Y., Shibuya K., Kanai K., Fujimaki Y, et al. Different neurological and physiological profiles in POEMS syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry. 2012. 83:476–479.
crossref
64.Sung JY., Kuwabara S., Ogawara K., Kanai K., Hattori T. Patterns of nerve conduction abnormalities in POEMS syndrome. Muscle Nerve. 2002. 26:189–193.
crossref
65.Mauermann ML., Sorenson EJ., Dispenzieri A., Mandrekar J., Suarez GA., Dyck PJ, et al. Uniform demyelination and more severe axonal loss distinguish POEMS syndrome from CIDP. J Neurol Neurosurg Psychiatry. 2012. 83:480–486.
crossref
66.Guo X., Qin X., Zhang Y., Huang C., Yu G. Electrophysiological features of POEMS syndrome and chronic inflammatory demyelinating polyneuropathy. J Clin Neurosci. 2014. 21:587–590.
crossref
67.Scarlato M., Previtali SC., Carpo M., Pareyson D., Briani C., Del Bo R, et al. Polyneuropathy in POEMS syndrome: role of angiogenic factors in the pathogenesis. Brain. 2005. 128(Pt 8):1911–1920.
crossref
68.Arimura K. Increased vascular endothelial growth factor (VEGF) is causative in crow-fukase syndrome. Rinsho Shinkeigaku. 1999. 39:84–85.
69.Kuwabara S., Dispenzieri A., Arimura K., Misawa S., Nakaseko C. Treatment for POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes) syndrome. Cochrane Database Syst Rev. 2012. (6):CD006828.
crossref
70.Suh YG., Kim YS., Suh CO., Kim YR., Cheong JW., Kim JS, et al. The role of radiotherapy in the management of POEMS syndrome. Radiat Oncol. 2014. 9:265.
crossref
71.Humeniuk MS., Gertz MA., Lacy MQ., Kyle RA., Witzig TE., Kumar SK, et al. Outcomes of patients with POEMS syndrome treated initially with radiation. Blood. 2013. 122:68–73.
crossref
72.Li J., Zhang W., Jiao L., Duan MH., Guan HZ., Zhu WG, et al. Combi-nation of melphalan and dexamethasone for patients with newly diagnosed POEMS syndrome. Blood. 2011. 117:6445–6449.
crossref
73.Dispenzieri A., Lacy MQ., Hayman SR., Kumar SK., Buadi F., Dingli D, et al. Peripheral blood stem cell transplant for POEMS syndrome is associated with high rates of engraftment syndrome. Eur J Haematol. 2008. 80:397–406.
crossref
74.Imai N., Taguchi J., Yagi N., Konishi T., Serizawa M., Kobari M. Relapse of polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes (POEMS) syndrome without increased level of vascular endothelial growth factor following successful autologous peripheral blood stem cell transplantation. Neuromuscul Disord. 2009. 19:363–365.
crossref
75.Chu BF., Shana’ah A., Hofmeister CC., Benson DM., Sell M., Tucker J, et al. Long-term therapy with lenalidomide in a patient with POEMS syndrome. Eur J Case Rep Intern Med. 2014. 1:pii: 2014_000093.
76.Dispenzieri A., Klein CJ., Mauermann ML. Lenalidomide therapy in a patient with POEMS syndrome. Blood. 2007. 110:1075–1076.
crossref
77.Kuwabara S., Misawa S., Kanai K., Sawai S., Hattori T., Nishimura M, et al. Thalidomide reduces serum VEGF levels and improves peripheral neuropathy in POEMS syndrome. J Neurol Neurosurg Psychiatry. 2008. 79:1255–1257.
crossref
78.Ohguchi H., Ohba R., Onishi Y., Fukuhara N., Okitsu Y., Yamamoto J, et al. Successful treatment with bortezomib and thalidomide for POEMS syndrome. Ann Hematol. 2011. 90:1113–1114.
crossref
79.Kanai K., Kuwabara S., Misawa S., Hattori T. Failure of treatment with anti-VEGF monoclonal antibody for long-standing POEMS syndrome. Intern Med. 2007. 46:311–313.
crossref
80.Ohwada C., Nakaseko C., Sakai S., Takeda Y., Abe D., Takeuchi M, et al. Successful combination treatment with bevacizumab, thalidomide and autologous PBSC for severe POEMS syndrome. Bone Marrow Transplant. 2009. 43:739–740.
crossref
81.Gertz MA. Waldenström macroglobulinemia: 2013 update on diagnosis, risk stratification, and management. Am J Hematol. 2013. 88:703–711.
crossref
82.Klein CJ., Moon JS., Mauermann ML., Zeldenrust SR., Wu Y., Dispenzieri A, et al. The neuropathies of waldenström's macroglobulinemia (WM) and IgM-MGUS. Can J Neurol Sci. 2011. 38:289–295.
crossref
83.Ansell SM., Kyle RA., Reeder CB., Fonseca R., Mikhael JR., Morice WG, et al. Diagnosis and management of Waldenström macroglobulinemia: mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin Proc. 2010. 85:824–833.
crossref
84.Buske C., Hoster E., Dreyling M., Eimermacher H., Wandt H., Metzner B, et al. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lympho-ma Study Group (GLSG). Leukemia. 2009. 23:153–161.
crossref
85.Lee HS., Kim K., Yoon DH., Kim JS., Bang SM., Lee JO, et al. Clinical factors associated with response or survival after chemotherapy in patients with waldenström macroglobulinemia in Korea. Biomed Res Int. 2014. 2014:253243.
crossref
86.Owen RG., Pratt G., Auer RL., Flatley R., Kyriakou C., Lunn MP, et al. Guidelines on the diagnosis and management of waldenström macroglobulinaemia. Br J Haematol. 2014. 165:316–333.
crossref
87.Usmani S., Sexton R., Crowley J., Barlogie B. Autologous stem cell transplantation as a care option in waldenström's macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011. 11:139–142.
crossref
88.Bachanova V., Burns LJ. Hematopoietic cell transplantation for waldenström macroglobulinemia. Bone Marrow Transplant. 2012. 47:330–336.
crossref
89.Gertz MA. Immunoglobulin light chain amyloidosis: 2013 update on diagnosis, prognosis, and treatment. Am J Hematol. 2013. 88:416–425.
crossref
90.Rajkumar SV., Gertz MA., Kyle RA. Prognosis of patients with primary systemic amyloidosis who present with dominant neuropathy. Am J Med. 1998. 104:232–237.
91.Kelly JJ. Neurologic complications of primary systemic amyloidosis. Rev Neurol Dis. 2006. 3:173–181.
92.Kyle RA., Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995. 32:45–59.
93.Benson MD., Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve. 2007. 36:411–423.
crossref
94.Sanchorawala V., Skinner M., Quillen K., Finn KT., Doros G., Seldin DC. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem-cell transplantation. Blood. 2007. 110:3561–3563.
crossref
95.Cordes S., Dispenzieri A., Lacy MQ., Hayman SR., Buadi FK., Dingli D, et al. Ten-year survival after autologous stem cell transplantation for immunoglobulin light chain amyloidosis. Cancer. 2012. 118:6105–6109.
crossref
96.Palladini G., Russo P., Nuvolone M., Lavatelli F., Perfetti V., Obici L, et al. Treatment with oral melphalan plus dexamethasone produces long-term remissions in AL amyloidosis. Blood. 2007. 110:787–788.
crossref
97.Moreau P., Jaccard A., Benboubker L., Royer B., Leleu X., Bridoux F, et al. Lenalidomide in combination with melphalan and dexamethasone in patients with newly diagnosed AL amyloidosis: a mul-ticenter phase 1/2 dose-escalation study. Blood. 2010. 116:4777–4782.
crossref
98.Sitia R., Palladini G., Merlini G. Bortezomib in the treatment of AL amyloidosis: targeted therapy? Haematologica. 2007. 92:1302–1307.
crossref
99.Rison RA., Beydoun SR. Paraproteinemic neuropathy: a practical review. BMC Neurol. 2016. 16:13.
crossref

Table 1.
Examinations for patients with suspected paraproteinemic neuropathy
Routine workup
Clinically neurologic examination at baseline, and follow-up checks at regular intervals
Electrophysiologic test determines whether the polyneuropathy has an axonal (CMAP/SNAP) or a demyelinating (DML/MNCV/TLI and CB/TD) pattern
Serum protein electrophoresis (with the presence or absence of an M-protein), immunoelectrophoresis, or immunofixation (to demarcate the heavy- and light-chain types of the paraprotein)
Quantitative Ig levels
Serum light-chain quantification, and the detection of Bence-Jones protein (free light chains) in a random urine sample; if positive, 24-h urine collection for urine protein quantification
Full blood cell count with differential, kidney and liver function tests, calcium and phosphate levels, and erythrocyte sedimentation rate
Physical examination for involvement of systemic organs such as lymphadenopathy, hepatosplenomegaly, ascites, edema, or macroglossia
Radiographic X-ray skeletal survey (including the skull, pelvic, spine, and ribs) to look for lytic or sclerotic lesions. If lytic or sclerotic lesions are strongly suspected, CT and/or MRI of the spine, pelvis, or whole body may be considered
Ultrasonography or CT of the chest, abdomen, and pelvis (to detect organomegaly or malignancy)
Bone-marrow aspiration and biopsy (required if the M-protein level is >15 g/L or the free-light-chain ratio is abnormal)
CSF analysis involving cellularity, cytospin, and protein level
Advanced workup
Serum VEGF levels if POEMS syndrome is suspected
Anti-MAG antibody a
MRI of nerve roots and brachial plexus, as for CIDP
Nerve biopsy b
Fat biopsy, most often when there is suspicion of amyloidosis

General ideas were derived from “Rajabally22" and "Rison et al.99".

CMAP, compound motor action potential; SNAP, sensory nerve action potential; DML, distal motor latency; MNCV, motor nerve conduction velocity; TLI, terminal latency index; CB, conduction block; TD, temporal dispersion; Ig, immunoglobulin; CT, computed tomography; MRI, magnetic resonance imaging; CSF, cerebrospinal fluid; VEGF, vascular endothelial growth factor; POEMS syndrome, polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes; MAG, myelin-associated glycoprotein; CIDP, chronic inflammatory demyelinating polyneuropathy.

a Half of patients with IgM paraproteinemic neuropathy have anti-MAG antibodies.

b The following conditions are suspected: (1) IgM paraproteinemic demyelinating neuropathy with negativity for anti-MAG antibodies, or IgG or IgA paraproteinemic demyelinating neuropathy with a chronic progressive course, and with the discovery of widely spaced myelin on electron microscopy or deposits of Ig and/or complement bound to myelin; (2) amyloidosis; and (3) malignant lymphoproliferative infiltration of nerves.

Table 2.
Summary of incidence rates, clinical, laboratory, electrophysiologic, and pathologic findings, and treatment options for patients with paraproteinemic neuropathies
Disease Prevalence of peripheral neuropathy Clinical Laboratory Electrophysiology Pathology Treatment
MGUS 30% Slowly progressive, distal sensory ataxia (IgM); M-protein <30 g/L Demyelinating with remarkably prolonged distal latencies Widening of myelin lamellae IgM MGUS (especially anti-MAG neuropathy) IVIg
Increased IgM, IgG, or IgA level
Distal and proximal sensorimotor neuropathy as in CIDP-like neuropathy (IgG/IgA) IgM antibodies against MAG, gangliosides (anti-GM1, -GD1a, -GD1b, or -GM2), sulfatide, chondroitin sulfate C
Anti-MAG antibodies detection in half (IgM) Interferon alfa-2a
Reduced TLI (IgM) CIDP-like or axonal (IgG/IgA) Plasma exchange
Rituximab + Cyclophosphamide
+ steroid
Endoneurial Ig deposits IgG/IgA MGUS
IVIg
Corticosteroid
Cyclophosphamide + steroid
Plasma exchange
Multiple myeloma 10–75% Length-dependent sensory or M-protein >30 g/L Almost always axonal Axonal degeneration No intervention reverses neuropathy;
(throughout sensorimotor neuropathy Bence-Jones proteinuria with or without amyloid treating myeloma can cause or
disease course) >10% plasma cells in deposition exacerbate existing neuropathy
bone marrow
IgG (50%) or IgA (20%)
kappa
Anemia, hypercalcemia
POEMS syndrome 50–85% Ascending symmetric proximal l IgG or IgA lambda Mixed demyelinating Axonal degeneration Isolated bone lesion without clonal
(throughout and distal sensorimotor Elevated VEGF and axonal Loss of myelinated fibers plasma cells
disease course) symptoms (CIDP-like Sclerotic bone lesions No conduction Inflammation in endoneu- Radiation
neuropathy) block or temporal rium, and uncompacted Disseminated bone-marrow
Weakness eventually dispersion myelin lamellae involvement
predominant Normal TLI Corticosteroids
Melphalan + dexamethasone
Cyclophosphamide +
dexamethasone
Auto-PBSCT
Thalidomide or
lenalidomide +
dexamethasone
Bortezomib
Bevacizumab
Waldenström 10–47% Slowly progressive symmetric c IgM kappa Similar to IgM MGUS Similar to IgM MGUS Primary
macroglobulin- (throughout distal sensory, or Anti-MAG antibodies in Rituximab +
emia disease course) sensorimotor (CIDP-like some cases cyclophosphamide +
neuropathy) symptoms dexamethasone + fludarabine
Refractory
Bortezomib, rituximab,
autologous stem-cell
transplantation
Weekly plasma exchange
Amyloidosis Presenting Painful progressive symmetric c, IgG or IgA lambda Axonal sensorimotor Endoneurial amyloid If eligible, autologous stem-cell
symptom is distal sensorimotor with or Occurs alone or with neuropathy deposition on transplantation
neuropathy in without dysautonomia other plasma-cell Carpal tunnel Congo-red staining If not eligible,
15–30% Carpal tunnel syndrome in 25 % disorders syndrome Light chains on melphalan, corticosteroid
immunochemistry thalidomide, lenalidomide, and
Axonal degeneration bortezomib

General ideas were derived from “Raheja et al. 8" and “Rison et al. 99”.

MGUS, monoclonal gammopathy of undetermined significance; IgM, immunoglobulin M; IgG, immunoglobulin G; IgA, immunoglobulin A; MAG, myelin-associated glycoprotein; TLI, terminal latency index; GM, ganglioside M; GD, ganglioside D; IVIg, intravenous immunoglobulin; CIDP, chronic inflammatory demyelinating polyneuropathy; POEMS syndrome, polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes; VEGF, vascular endothelial growth factor; Auto-PBSCT, autologous peripheral-blood stem-cell transplantation.

TOOLS
Similar articles