Journal List > J Korean Acad Prosthodont > v.56(3) > 1099092

Liezl, Labriaga, Song, Park, Lee, and Shin: Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin

Abstract

Purpose

This study evaluated the effect of nonthermal plasma treatment on the bond strength of autopolymerizing relining resin to the injection molded thermoplastic denture base resins (TDBRs) with different surface treatments.

Materials and methods

Acrylic Resin (Acrytone), Polyester (Estheshot-Bright), Polyamide (Valplast) and Polypropylene (Weldenz) were subjected to various surface treatments: No treatment, Nonthermal plasma, Sandblasting, Sandblasting and nonthermal plasma. Specimens were bonded using an autopolymerizing relining resin. Shear bond strength was tested using universal testing machine with crosshead speed of 1 mm/min. Statistical analysis by two-way analysis of variance with Tukey's test post hoc was used.

Results

Acrytone showed significantly higher shear bond strength value among other TDBR group while Weldenz had the lowest. The sandblasting and nonthermal plasma condition had significantly higher shear bond strength value in all of the resin groups (P < .05).

Conclusion

The use of nonthermal plasma treatment showed limited effect on the shear bond strength between TDBRs and relining resin, and combination of nonthermal plasma and sandblasting improved the shear bond strength between TDBR and reline material. (J Korean Acad Prosthodont 2018;56:199-205)

REFERENCES

1.Fueki K., Ohkubo C., Yatabe M., Arakawa I., Arita M., Ino S., Kanamori T., Kawai Y., Kawara M., Komiyama O., Suzuki T., Nagata K., Hosoki M., Masumi S., Yamauchi M., Aita H., Ono T., Kondo H., Tamaki K., Matsuka Y., Tsukasaki H., Fujisawa M., Baba K., Koyano K., Yatani H. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures. J Prosthodont Res. 2014. 58:71–84.
crossref
2.Takabayashi Y. Characteristics of denture thermoplastic resins for non-metal clasp dentures. Dent Mater J. 2010. 29:353–61.
crossref
3.Hamanaka I., Shimizu H., Takahashi Y. Bond strength of a chairside autopolymerizing reline resin to injection-molded thermoplastic denture base resins. J Prosthodont Res. 2017. 61:67–72.
crossref
4.Hargreaves AS. Nylon as a denture-base material. Dent Pract Dent Rec. 1971. 22:122–8.
5.Stafford GD., Huggett R., MacGregor AR., Graham J. The use of nylon as a denture-base material. J Dent. 1986. 14:18–22.
crossref
6.Parvizi A., Lindquist T., Schneider R., Williamson D., Boyer D., Dawson DV. Comparison of the dimensional accuracy of injection-molded denture base materials to that of conventional pressure-pack acrylic resin. J Prosthodont. 2004. 13:83–9.
crossref
7.Yunus N., Rashid AA., Azmi LL., Abu-Hassan MI. Some ‡ex-ural properties of a nylon denture base polymer. J Oral Rehabil. 2005. 32:65–71.
8.Katsumata Y., Hojo S., Ino S., Hamano N., Watanabe T., Suzuki Y., Ikeya H., Morino T., Toyoda M. Mechanical characterization of a ‡exible nylon denture base material. Bull Kanagawa Dent Col. 2007. 35:177–82.
9.Koodaryan R., Hafezeqoran A. Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer. J Adv Prosthodont. 2016. 8:504–10.
crossref
10.Kim JH., Choe HC., Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J. 2014. 33:32–8.
crossref
11.Brown HR. Adhesion of polymers. MRS Bull. 1996. 21:24–7.
crossref
12.Katsumata Y., Hojo S., Hamano N., Watanabe T., Yamaguchi H., Okada S., Teranaka T., Ino S. Bonding strength of autopolymerizing resin to nylon denture base polymer. Dent Mater J. 2009. 28:409–18.
crossref
13.Nishigawa G., Maruo Y., Oka M., Oki K., Minagi S., Okamoto M. Plasma treatment increased shear bond strength between heat cured acrylic resin and self-curing acrylic resin. J Oral Rehabil. 2003. 30:1081–4.
crossref
14.Hoffmann C., Berganza C., Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res. 2013. 3:21.
crossref
15.Chen M., Zhang Y., Sky Driver M., Caruso AN., Yu Q., Wang Y. Surface modification of several dental substrates by nonthermal, atmospheric plasma brush. Dent Mater. 2013. 29:871–80.
crossref
16.Yang YZ., Tian JM., Tian JT., Chen ZQ., Deng XJ., Zhang DH. Preparation of graded porous titanium coatings on titanium implant materials by plasma spraying. J Biomed Mater Res. 2000. 52:333–7.
crossref
17.Fischer H., Wirtz DC., Weber M., Neuss M., Niethard FU., Marx R. Improvement of the long-term adhesive strength between metal stem and polymethylmethacrylate bone cement by a silica/silane interlayer system. J Biomed Mater Res. 2001. 57:413–8.
crossref
18.Kim JH., Choe HC., Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J. 2014. 33:32–8.
crossref
19.Su N., Yue L., Liao Y., Liu W., Zhang H., Li X., Wang H., Shen J. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin. J Adv Prosthodont. 2015. 7:214–23.
crossref
20.Ozden N., Akaltan F., Suzer S., Akovali G. Time-related wettability characteristic of acrylic resin surfaces treated by glow discharge. J Prosthet Dent. 1999. 82:680–4.
21.Jokinen V., Suvanto P., Franssila S. Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicro‡uidics. 2012. 6:16501–10.
crossref
22.Ozcan C., Zorlutuna P., Hasirci V., Hasirci N. In‡uence of oxygen plasma modification on surface free energy of PMMA fllms and cell attachment. Macromol Symp. 2008. 269:128–37.

Fig. 1.
Experimental study design procedure.
jkap-56-199f1.tif
Fig. 2.
(A) Image of the specimen, (B) Shear bond strength testing procedure.
jkap-56-199f2.tif
Fig. 3.
Shear bond strength test between surface treatment groups. Different letters within the same material show significant difference (P < .05). AC: Acrytone; ES: Estheshot; VA: Valplast; WE: Weldenz; C: No treatment; SB: Sandblasting; NTP: Nonthermal plasma; SB + NTP: Sandblasting and nonthermal plasma.
jkap-56-199f3.tif
Table 1.
List of thermoplastic denture base resins and autopolymerizing relining resin
Materials Product Manufacturer Processing method Lot number
Polyester Estheshot-Bright (ES) I-cast Co. Ltd., Kyoto, Japan Heat processed at 270°C for 20 min. 4D5760060
Acrylic resin Acrytone (AC) High Dental Japan, Osaka, Japan Heat processed at 250°C for 20 min. 1211097
Polyamide Valplast (VA) Valplast International Corp., New york, NY, USA Heat processed at 285°C for 20 min. 140213
Polypropylene Weldenz (WE) Weldenz, Nagoya, Japan Heat processed at 235°C for 20 min. 111547
Autopolymerized relining resin Tokuyama Rebase II Tokuyama Dental Corp., Tokyo, Japan Composition: Powder (PEMA), Liquid (AAEM 1.9-nonanediol Dimethacrylate) 137030
Table 2.
Mean shear bond strength (MPa) values of different thermoplastic denture base materials
  AC ES VA WE
C 7.66 ± 1.19A;a 2.32 ± 0.78A;b 1.21 ± 0.50A;c 0.98 ± 0.33A;c
NTP 6.57 ± 1.11A;a 2.97 ± 0.97A;b 0.95 ± 0.49A;c 0.76 ± 0.33A;c
SB 7.65 ± 0.66A;a 4.60 ± 0.41B;b 2.14 ± 0.56B;c 2.24 ± 0.38B;d
SB + NTP 8.78 ± 0.60B;a 4.88 ± 0.40B;b 3.99 ± 0.54B;c 3.50 ± 0.42C;c

Different letters show a significant difference (capital letter: in the same column, small letter: in the same row, P < .05). AC: Acrytone; ES: Estheshot; VA: Val plast; WE: Weldenz; C: No treatment; NTP: Nonthermal plasma; SB: Sandblasting; SB + NTP: Sandblasting and nonthermal plasma.

TOOLS
Similar articles