Journal List > J Rheum Dis > v.25(3) > 1099059

Jung: Adult Stem Cell Treatment for Rheumatoid Arthritis

Abstract

Since methotrexate began to be used in the treatment of rheumatoid arthritis (RA) 30 years ago, RA treatments have advanced rapidly from only reducing joint pain and inflammation to suppressing disease progression and joint destruction. In particular, the development of biologics and targeted anti-rheumatic drugs has almost made it possible to induce remission in patients with RA. On the other hand, the current RA treatments are still limited by adverse effects and treatment failure. Stem cell therapy has been suggested as an alternative treatment of RA, and preclinical studies and clinical trials using representative adult stem cells (ASCs), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), are currently underway. HSC therapy in RA has mostly progressed based on the concept of ‘immune reset', in which the existing immune cells are replaced with healthy ones. HSC transplantation was completed relatively safely, and the patients showed a positive treatment response. Nevertheless, the treatment response of HSCs in RA depends on the conditioning regimen, and the efficacy did not persist for a long time. The MSCs possessed a hypo-immunogenicity, immune modulation effect and tissue regeneration capability, making them another promising candidate for the RA treatment. MSC transplantation in RA was found to be safe with few adverse effects, such as immune rejection or embolism, but it showed a partial and transient response. This review addresses the characteristics of ASCs, focusing specifically on HSCs and MSCs, and summarizes the results of preclinical studies and clinical trials of ASC therapy in RA.

REFERENCES

1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003; 423:356–61.
crossref
2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016; 388:2023–38.
crossref
3. Alghasham A, Rasheed Z. Therapeutic targets for rheumatoid arthritis: Progress and promises. Autoimmunity. 2014; 47:77–94.
crossref
4. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011; 365:2205–19.
crossref
5. Smolen JS, Nash P, Durez P, Hall S, Ilivanova E, Irazoque-Palazuelos F, et al. Maintenance, reduction, or withdrawal of etanercept after treatment with etanercept and methotrexate in patients with moderate rheumatoid arthritis (PRESERVE): a randomised controlled trial. Lancet. 2013; 381:918–29.
crossref
6. Ho PJ, Yen ML, Yet SF, Yen BL. Current applications of human pluripotent stem cells: possibilities and challenges. Cell Transplant. 2012; 21:801–14.
crossref
7. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126:663–76.
crossref
8. Cipriani P, Carubbi F, Liakouli V, Marrelli A, Perricone C, Perricone R, et al. Stem cells in autoimmune diseases: Implications for pathogenesis and future trends in therapy. Autoimmun Rev. 2013; 12:709–16.
crossref
9. Franceschetti T, De Bari C. The potential role of adult stem cells in the management of the rheumatic diseases. Ther Adv Musculoskelet Dis. 2017; 9:165–79.
crossref
10. Rumman M, Dhawan J, Kassem M. Concise review: quies-cence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells. 2015; 33:2903–12.
crossref
11. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143–7.
crossref
12. Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006; 116:1195–201.
crossref
13. Zhang H, Wang ZZ. Mechanisms that mediate stem cell self-renewal and differentiation. J Cell Biochem. 2008; 103:709–18.
crossref
14. Swart JF, Delemarre EM, van Wijk F, Boelens JJ, Kuball J, van Laar JM, et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev Rheumatol. 2017; 13:244–56.
crossref
15. Ansboro S, Roelofs AJ, De Bari C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol. 2017; 29:201–7.
crossref
16. Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles ME, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, et al. Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol. 2012; 49:R89–111.
crossref
17. Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016; 2016; 9451492.
crossref
18. Kondo M. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol Rev. 2010; 238:37–46.
crossref
19. Bouffi C, Djouad F, Mathieu M, Noël D, Jorgensen C. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology (Oxford). 2009; 48:1185–9.
crossref
20. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961; 14:213–22.
crossref
21. Tavian M, Biasch K, Sinka L, Vallet J, Péault B. Embryonic origin of human hematopoiesis. Int J Dev Biol. 2010; 54:1061–5.
crossref
22. Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther. 2013; 4:71.
crossref
23. Mosaad YM. Hematopoietic stem cells: an overview. Transfus Apher Sci. 2014; 51:68–82.
crossref
24. Saleh M, Shamsasanjan K, Movassaghpourakbari A, Akbarzadehlaleh P, Molaeipour Z. The impact of mesenchymal stem cells on differentiation of hematopoietic stem cells. Adv Pharm Bull. 2015; 5:299–304.
crossref
25. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001; 294:1933–6.
crossref
26. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008; 132:598–611.
crossref
27. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell. 2007; 131:994–1008.
crossref
28. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol. 2002; 3:687–94.
crossref
29. Kim KW, Cho ML, Kim HR, Ju JH, Park MK, Oh HJ, et al. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: role of interleukin-17 and CD40L-CD40 interaction. Arthritis Rheum. 2007; 56:1076–86.
crossref
30. Rachamim N, Gan J, Segall H, Marcus H, Berebi A, Krauthgamer R, et al. Potential role of CD34 stem cells in tolerance induction. Transplant Proc. 1997; 29:1935–6.
crossref
31. Rachamim N, Gan J, Segall H, Krauthgamer R, Marcus H, Berrebi A, et al. Tolerance induction by “megadose” hematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation. 1998; 65:1386–93.
32. Kared H, Leforban B, Montandon R, Renand A, Layseca Espinosa E, Chatenoud L, et al. Role of GM-CSF in tolerance induction by mobilized hematopoietic progenitors. Blood. 2008; 112:2575–8.
crossref
33. van Bekkum DW, Bohre EP, Houben PF, Knaan-Shanzer S. Regression of adjuvant-induced arthritis in rats following bone marrow transplantation. Proc Natl Acad Sci U S A. 1989; 86:10090–4.
crossref
34. Van Bekkum DW. Experimental basis for the treatment of autoimmune diseases with autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2003; 32(Suppl 1):S37–9.
crossref
35. van Bekkum DW. Conditioning regimens for the treatment of experimental arthritis with autologous bone marrow transplantation. Bone Marrow Transplant. 2000; 25:357–64.
crossref
36. Kamiya M, Sohen S, Yamane T, Tanaka S. Effective treatment of mice with type II collagen induced arthritis with lethal irradiation and bone marrow transplantation. J Rheumatol. 1993; 20:225–30.
37. Snowden JA, Kapoor S, Wilson AG. Stem cell transplantation in rheumatoid arthritis. Autoimmunity. 2008; 41:625–31.
crossref
38. Nelson JL, Torrez R, Louie FM, Choe OS, Storb R, Sullivan KM. Pre-existing autoimmune disease in patients with long-term survival after allogeneic bone marrow transplantation. J Rheumatol Suppl. 1997; 48:23–9.
39. Lowenthal RM, Francis H, Gill DS. Twenty-year remission of rheumatoid arthritis in 2 patients after allogeneic bone marrow transplant. J Rheumatol. 2006; 33:812–3.
40. McKendry RJ, Huebsch L, Leclair B. Progression of rheumatoid arthritis following bone marrow transplantation. A case report with a 13-year followup. Arthritis Rheum. 1996; 39:1246–53.
crossref
41. Snowden JA, Atkinson K, Kearney P, Brooks P, Biggs JC. Allogeneic bone marrow transplantation from a donor with severe active rheumatoid arthritis not resulting in adoptive transfer of disease to recipient. Bone Marrow Transplant. 1997; 20:71–3.
crossref
42. Cooley HM, Snowden JA, Grigg AP, Wicks IP. Outcome of rheumatoid arthritis and psoriasis following autologous stem cell transplantation for hematologic malignancy. Arthritis Rheum. 1997; 40:1712–5.
crossref
43. Snowden JA, Passweg J, Moore JJ, Milliken S, Cannell P, Van Laar J, et al. Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol. 2004; 31:482–8.
44. Pasquini MC, Voltarelli J, Atkins HL, Hamerschlak N, Zhong X, Ahn KW, et al. Transplantation for autoimmune diseases in north and South America: a report of the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2012; 18:1471–8.
crossref
45. Snowden JA, Biggs JC, Milliken ST, Fuller A, Brooks PM. A phase I/II dose escalation study of intensified cyclophosphamide and autologous blood stem cell rescue in severe, active rheumatoid arthritis. Arthritis Rheum. 1999; 42:2286–92.
crossref
46. Burt RK, Georganas C, Schroeder J, Traynor A, Stefka J, Schuening F, et al. Autologous hematopoietic stem cell transplantation in refractory rheumatoid arthritis: sustained response in two of four patients. Arthritis Rheum. 1999; 42:2281–5.
crossref
47. Bingham SJ, Snowden J, McGonagle D, Richards S, Isaacs J, Morgan G, et al. Autologous stem cell transplantation for rheumatoid arthritis–interim report of 6 patients. J Rheumatol Suppl. 2001; 64:21–4.
48. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991; 9:641–50.
crossref
49. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966; 16:381–90.
crossref
50. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013; 13:392–402.
crossref
51. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13:4279–95.
crossref
52. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000; 97:13625–30.
53. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells. 2004; 22:1330–7.
crossref
54. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315–7.
crossref
55. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003; 31:890–6.
56. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25 highFOXP3+ regulatory T cells. Stem Cells. 2008; 26:212–22.
57. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003; 75:389–97.
crossref
58. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood. 2005; 106:4057–65.
crossref
59. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006; 108:2114–20.
crossref
60. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine, 3-dioxygenase-mediated tryptophan degradation. Blood. 2004; 103:4619–21.
61. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenu-ate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009; 15:42–9.
crossref
62. Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, et al. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol. 2009; 37:604–15.
crossref
63. Stappenbeck TS, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science. 2009; 324:1666–9.
crossref
64. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016; 7:7.
crossref
65. Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum. 2007; 56:1175–86.
crossref
66. González MA, Gonzalez-Rey E, Rico L, Büscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum. 2009; 60:1006–19.
crossref
67. Liu Y, Mu R, Wang S, Long L, Liu X, Li R, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther. 2010; 12:R210.
crossref
68. Ra JC, Kang SK, Shin IS, Park HG, Joo SA, Kim JG, et al. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med. 2011; 9:181.
crossref
69. Liang J, Li X, Zhang H, Wang D, Feng X, Wang H, et al. Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol. 2012; 31:157–61.
crossref
70. Wang L, Wang L, Cong X, Liu G, Zhou J, Bai B, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev. 2013; 22:3192–202.
crossref
71. Álvaro-Gracia JM, Jover JA, García-Vicuña R, Carreño L, Alonso A, Marsal S, et al. Intravenous administration of ex-panded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, place-bo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis. 2017; 76:196–202.
crossref

Table 1.
Types and characteristics of stem cells
Stem cell type Cell source Potency (target cells) Strong point Weak point Ref.
Embryonic stem cell Blastocyst of embryo Pluripotent (all kinds of cells) High replicable capability, Large quantity production Immune rejection, Ethical issue, Tumor formation [6,16]
Induced pluripotent stem cell Skin fibroblast, keratinocyte, T cell, hepatocyte, other somatic cells Pluripotent (all kinds of cells) Patient-specific, Large quantity production, No ethical issue Tumor formation, Contamination, High cost [7,17]
Adult stem cell Hematopoietic stem cell BM, UCB, peripheral blood Multipotent (myeloid and lymphoid Proven safety, No ethical issue, Restore blood cell Limited differentiation, Limited quantity [9,18,23]
Mesenchymal stem cell BM, UCB, UC, placenta, adipose tissue, dental pulp, periosteum blood cells) Multipotent (osteoblast, chondrocyte, adipocyte) Proven safety, No ethical issue, Hypo-immunogenic, Immune modulation production Limited differentiation, Limited quantity production, Tissue sequestration [11,16,48]

Target cells are those cells in which the stem cells can be differentiate. BM: bone marrow, UCB: umbilical cord blood, UC: umbilical cord, Ref.: reference.

Table 2.
Maj jor clinical trials o of hematopoietic stem cell therapy i n rheumatoid arthritis
No. of patients Transplantation type Cell source (n) Graft manipulation (n) Conditioning regimen (n) Response (n) Ref.
8 Autologous Peripheral blood None CYC 100 mg/kg (4) CYC 200 mg/kg (4) Arthritis improving (8) – only lasting 2∼3 mo in CYC 100 mg/kg (4) – beyond 17∼19 mo in CYC 200 mg/kg (4) [45]
4 Autologous Peripheral blood CD34+ selection CYC 200 mg/kg +ATG (3)+TBI (1) Arthritis improving (3) – ACR70 (3) within 3 mo – ACR70 (1), ACR50 (1) after 6 mo [46]
6 Autologous Peripheral blood CD34+ selection CYC 200 mg/kg Arthritis improving (6) – ACR20 (3), ACR50 (2), ACR70 [47]
73 Autologous BM (1) Peripheral blood (72) Unmanipulated (28) CD34+ selection (45) Various: CYC 200 mg/kg (62) (1): all relapsed at 1.5∼9 mo ACR50 (49) HAQ score↓ Most restarted DMARDs within 6 mo [43]

BM: bone marrow, CD: cluster of differentiation, CYC: cyclophosphamide, ATG: anti-thymocyte globulin, TBI: total body irradiation, ACR: American College of Rheumatology, HAQ: Health Assessment Questionnaire, ↓: decrease, DMARD: disease-modifying antirheumatic drug, Ref.: reference.

Table 3.
Major clinical trials of mesenchymal stem cell therapy in rheumatoid arthritis
No. of patients Transplantation type Cell source (n) Total cell dose (n) Follow-up duration (mo) Response (n) Ref.
3 Autologous Adipose tissue 6×108 (1)8×108 (2) 3∼13 Pain VAS↓, KWOMAC↓ (1) Walking improving (2) Off steroid (2) [68]
4 Allogeneic Bone marrow (1) Umbilical cord (3) 1×106/kg) 24 ESR↓, DAS28↓, Pain VAS↓ (3) EULAR response but relapse (2) No EULAR response (2) No DAS28 remission (4) [69]
136 Allogeneic Umbilical cord 4×107 (112)8×107 (24) 3∼8 DAS28 remission (68) DAS28 low-activity (40) [70]
46 Allogeneic Adipose tissue 3×106/kg (20)6×106/kg (20)12×106/kg (6) 6 ACR20 (53), ACR50 (31), ACR70 (12) ACR20 (9), ACR50 (5), ACR70 (2) EULAR response (6) DAS28 low-activity (6) [71]

VAS: visual analog scale, ↓: decrease, KWOMAC: Korean Western Ontario and McMaster Universities arthritis index, ESR: erythrocyte sedimentation rate, DAS28: 28 joints disease activity score, EULAR: The European League Against Rheumatism, ACR: American College of Rheumatology, Ref.: reference.

TOOLS
Similar articles