Journal List > Prog Med Phys > v.24(4) > 1098398

Kang and Lee: Development of DICOM Convert Program for the Geant4 Monte Carlo Simulation of the Radiotherapy

Abstract

The DICOM converter program of the Geant4 Monte Carlo simulation code for the application of radiotherapy was developed. We analysis the header part of the DICOM file and find various parameters, such as matrix size, pixel size, stored data bits, high bit, and padding values. Especially we evaluate every pixel value of the DICOM files. To conform the exact convert of the pixel values, we developed the verify program. As a result, the DICOM formats generated from difference CT vendors can be converted and verified for Genat4 calculations.

REFERENCES

1. Joh YG, Kim HD, Kim BY, et al. Calculation of energy spectra for electron beam of medical linear accelerator using GEANT4. Korean Journal of Medical Physics. 22(2):85–91. 2011.
2. Park SH, Jung WG, Rah JE, Park S, Suh TS. Evaluation of the secondary particle effect in inhomogeneous media for proton therapy using Geant4 based MC simulation. Journal of Medical Physics. 21(4):311–322. 2010.
3. Kimura A, Tanaka S, Aso T, et al. DICOM interface and visulization tool for Geant4-based dose calculation. Nuclear Science Symposium Conference Record 2005 IEEE Volume. 2:981–984. 2005.
4. Agostinelli S, Allison J, Amako K, et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 53(1):270–278. 2006.
5. Kim BY, Kim HD, Kim SJ, Oh SA, Kang JK, Kim SK. Study on the 6MV photon beam characteristics and analysis method from medical linear accelerators using Geant4 medical Linac2 example. Journal of Medical Physics. 22(2):79–84. 2011.
6. GEANT4 Collaboration Version Geant4 9.6.0. Geant4 user's guide for application developers. CERN. 2013.
7. ICRU Report 46. Photon, Electron, Proton and Neutron Interaction data for Body Tissues. International Commission on Radiation Units and Measurement, bethesda, MD. 1992.
8. Agostinelli S, Allison J, Amako K, et al. Geant4 – a simulation toolkit. Nuclear Instruments and Methods A. 506(3):250–303. 2003.

Fig. 1.
Structure of the header part of the Dicom file.
pmp-24-259f1.tif
Fig. 2.
Difference of header part of DICOM file.
pmp-24-259f2.tif
Fig. 3.
Difference of bits stored. (a) bits stored=12 and High bits= 11 (b) bits stored=16 and high bit=15.
pmp-24-259f3.tif
Fig. 4.
Evaluation of converted meta files. (a) original DICOM file (b) compressed file (compression=1) (c) compressed file (compression=2) (d) compressed file (compression=4).
pmp-24-259f4.tif
Table 1.
Relationship between HU values and mass density of the materials on the CT image.
HU (hounsfield unit) Density (g/cm3)
−2,000 0.000
−1,000 0.010
−773 0.190
−516 0.490
−72 0.950
−34 0.980
−4 1.000
42 1.040
49 1.050
238 1.120
951 1.510
2,000 2.000
Table 2.
Relation for the density and materials.
Density Range (g/cm3) Material
0. 0.207 Air
0.207 0.481 Lungs (inhale)
0.481 0.919 Lungs (exhale)
0.919 0.979 Adipose
0.979 1.004 Breast
1.004 1.043 Phantom
1.043 1.109 Liver
1.109 1.113 Muscle
1.113 1.496 Trabecular bone
1.496 1.654 Dense bone
TOOLS
Similar articles