Abstract
Objectives
To investigate the potential clinical use of the spinal instability neoplastic score (SINS) for determining the surgical strategy, especially regarding the need for anterior support.
Summary of Literature Review
The SINS seems to enable an improved qualitative and quantitative assessment of spinal instability in patients with spinal metastasis.
Materials and Methods
We retrospectively reviewed 69 consecutive patients who underwent surgical treatment for spinal metastasis. We assessed the patients’ preoperative status with respect to each component of the SINS. Multiple logistic regression was performed to calculate odds ratios (ORs) representing the associations among SINS, age, Eastern Cooperative Oncology Group performance status, modified Tokuhashi score, as well as the preoperative Nurick grade variables and reconstruction of the anterior spinal column.
Results
Among the 6 items in the SINS, those indicating the degree of collapse and alignment had significantly higher scores in those who underwent corpectomy and anterior support (p<0.001). Multiple logistic regression revealed that the total SINS was the only factor significantly associated with predicting whether anterior support should be performed (adjusted OR=1.595). Receiver operating characteristic (ROC) curve analysis suggested that a cut-off value of 10 points on the SINS scale could be used to decide whether anterior support following corpectomy should be performed (AUC=0.706).
REFERENCES
1. White AP, Kwon BK, Lindskog DM, et al. Metastatic disease of the spine. J Am Acad Orthop Sur. 2006 Oct; 14(11):587–98.
2. White AA 3rd, Panjabi MM, Posner I, et al. Spinal stability: evaluation and treatment. Instr Course Lect. 1981; 30:457–83.
3. Weber MH, Burch S, Buckley J, et al. Instability and impending instability of the thoracolumbar spine in patients with spinal metastases: a systematic review. Int J Oncol. 2011 Jan; 38(1):5–12. DOI: 10.3892/ijo_00000818.
4. Fisher CG, DiPaola CP, Ryken TC, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010 Oct 15; 35(22):E1221–9. DOI: 10.1097/BRS.0b013e3181e16ae2.
5. Fisher CG, Versteeg AL, Schouten R, et al. Reliability of the spinal instability neoplastic scale among radiologists: an assessment of instability secondary to spinal metastases. AJR Am J Roentgenol. 2014 Oct; 203(4):869–74. DOI: 10.2214/AJR.13.12269.
6. Fourney DR, Frangou EM, Ryken TC, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011 Aug 1; 29(22):3072–7. DOI: 10.1200/JCO.2010.34.3897.
7. Findlay GF. The role of vertebral body collapse in the management of malignant spinal cord compression. J Neurol Neurosurg Psychiatry. 1987 Feb; 50(2):151–4. DOI: 10.1136/jnnp.50.2.151.
8. Roila F, Lupattelli M, Sassi M, et al. Intra and interobserver variability in cancer patients’ performance status assessed according to Karnofsky and ECOG scales. Ann Oncol. 1991 Jun; 2(6):437–9. DOI: DOI:10.1093/oxfordjournals.an-nonc.a057981.
9. Tokuhashi Y, Ajiro Y, Umezawa N. Outcome of treatment for spinal metastases using scoring system for preoperative evaluation of prognosis. Spine (Phila Pa 1976). 2009 Jan 1; 34(1):69–73. DOI: 10.1097/BRS.0b013e3181913f19.
10. Revanappa KK, Rajshekhar V. Comparison of Nurick grading system and modified Japanese Orthopaedic Association scoring system in evaluation of patients with cervical spondylotic myelopathy. Eur Spine J. 2011 Sep; 20(9):154551. DOI: DOI:10.1007/s00586-011-1773-y.
11. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993 Apr; 39(4):561–77.
12. Keeney S, Hasson F, McKenna HP. A critical review of the Delphi technique as a research methodology for nursing. Int J Nurs Stud. 2001 Apr; 38(2):195–200. DOI: DOI:10.1016/s0020-7489 (00)00044-4.
13. Huisman M, van der Velden JM, van Vulpen M, et al. Spinal instability as defined by the spinal instability neoplastic score is associated with radiotherapy failure in metastatic spinal disease. Spine J. 2014 Dec 1; 14(12):2835–40. DOI: DOI:10.1016/j.spinee.2014.03.043.
14. Fisher CG, Schouten R, Versteeg AL, et al. Reliability of the Spinal Instability Neoplastic Score (SINS) among radiation oncologists: an assessment of instability secondary to spinal metastases. Radiat Oncol. 2014 Mar 4; 9:69. DOI: 10.1186/1748-717X-9-69.
15. Mirels H. Metastatic disease in long bones: A proposed scoring system for diagnosing impending pathologic fractures. 1989. Clin Orthop Relat Res. 2003 Oct; 415(Suppl):S4–13. DOI: DOI:10.1097/01.blo.0000093045.56370.dd.
16. Mac Niocaill RF, Quinlan JF, Stapleton RD, et al. Inter-and intra-observer variability associated with the use of the Mirels'scoring system for metastatic bone lesions. Int Orthop. 2011 Jan; 35(1):83–6. DOI: DOI:0.1007/s00264-009-0941-8.
17. Evans AR, Bottros J, Grant W, et al. Mirels’ rating for humerus lesions is both reproducible and valid. Clin Orthop Relat Res. 2008 Jun; 466(6):1279–84. DOI: DOI:10.1007/s11999-008-0200-0.
18. Ivanishvili Z, Fourney DR. Incorporating the Spine Instability Neoplastic Score into a Treatment Strategy for Spinal Metastasis: LMNOP. Global Spine J. 2014 Jun; 4(2):12936. DOI: DOI:10.1055/s-0034-1375560.
19. Patchell RA, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005 Aug 20; 366(9486):643–8. DOI: 10.1016/S0140-6736 (05)66954-1.
Table 1.
Score | |
---|---|
Location | |
Junctional (occiput-C2, C7-T2, T11-L1, L5-S1) | 3 |
Mobile spine (C3-C6, L2-L4) | 2 |
Semirigid (T3-T10) | 1 |
Rigid (S2-S5) | 0 |
Pain∗ | |
Yes | 3 |
Occasional pain but not mechanical | 1 |
Pain-free lesion | 0 |
Bone lesion | |
Lytic | 2 |
Mixed (lytic/blastic) | 1 |
Blastic | 0 |
Radiographic spinal alignment | |
Subluxation/translation present | 4 |
De novo deformity (kyphosis/scoliosis) | 2 |
Normal alignment | 0 |
Vertebral body collapse | |
> 50% collapse | 3 |
< 50% collapse | 2 |
No collapse with > 50% body involved | 1 |
None of the above | 0 |
Posterolateral involvement of spinal elements† | |
Bilateral | 3 |
Unilateral | 1 |
None of the above | 0 |
Table 2.
Characteristics | Total (n=69) | Without anterior support (n=21) | With anterior support (n=48) | p-value∗ |
---|---|---|---|---|
Age (yr) | 54.7±13.8 | 53.5±14.2 | 55.2±13.8 | 0.653 |
Sex (n) | 0.493 | |||
Male | 43 | 16 | 27 | |
Female | 26 | 7 | 19 | |
Body weight (kg) | 62.2±8.5 | 64.3±7.3 | 61.3±8.9 | 0.201 |
BMI (kg/m2) | 23.3±2.9 | 23.4±3.0 | 23.2±2.9 | 0.792 |
Primary tumors (n) | 0.346 | |||
Hepatocellular carcinoma | 15 | 6 | 9 | |
Urogenital | 13 | 1 | 10 | |
Lung | 10 | 2 | 8 | |
Sarcomas | 8 | 3 | 5 | |
Colorectal cancer | 5 | 1 | 4 | |
Thyroid cancer | 5 | 1 | 4 | |
Hematologic malignancy | 7 | 4 | 3 | |
Breast cancer | 2 | 1 | 1 | |
Pancreas | 1 | 1 | 0 | |
Unknown origin metastasis | 3 | 1 | 2 | |
Spinal Instability Neoplastic Score | 10.20±2.4 | 8.95±1.5 | 10.75±2.5 | 0.039 |
Pain | 3.00±0.0 | 3.00±0.0 | 3.00±0.0 | 1.000 |
Location | 1.89±0.8 | 1.86±0.9 | 1.90±0.9 | 0.746 |
Bone lesion quality | 1.55±1.6 | 1.33±0.8 | 1.65±0.5 | 0.317 |
Collapse | 1.55±1.0 | 0.76±0.7 | 1.90±0.9 | <0.001 |
Alignment | 0.77±1.0 | 0.10±0.4 | 1.06±1.0 | <0.001 |
Posterolateral involvement | 1.48±1.2 | 1.95±1.1 | 1.27±1.2 | 0.099 |
ECOG performance status (n) | 0.627 | |||
Grade 0 | 24 | 8 | 16 | |
Grade 1 | 22 | 6 | 16 | |
Grade 2 | 7 | 3 | 4 | |
Grade 3 | 11 | 4 | 7 | |
Grade 4 | 5 | 0 | 5 | |
Modified Tokuhashi score (n) | 0.778 | |||
0-8 points | 26 | 10 | 16 | |
9-11 points | 25 | 4 | 21 | |
12-15 points | 18 | 7 | 11 | |
Survival after spinal surgery (days) | 653 | 603 | 675 | 0.408 |
Preoperative Nurick grade | 0.294 | |||
Grade 0 | 24 | 6 | 18 | |
Grade 1 | 18 | 5 | 13 | |
Grade 2 | 5 | 1 | 4 | |
Grade 3 | 5 | 2 | 3 | |
Grade 4 | 2 | 1 | 1 | |
Grade 5 | 15 | 6 | 9 | |
Postoperative Nurick grade | 1.59 | 1.8 | 1.5 | 0.690 |
Grade 0 | 25 | 7 | 18 | |
Grade 1 | 20 | 5 | 15 | |
Grade 2 | 8 | 3 | 5 | |
Grade 3 | 1 | 1 | 0 | |
Grade 4 | 4 | 1 | 3 | |
Grade 5 | 11 | 4 | 7 | |
Neurologic recovery rate (%) | 30.8 | 43.9 | 25.0 | 0.928 |
Grade of Excision of Body (n) | <0.001 | |||
0: no corpectomy | 15 | 15 | 0 | |
1: corpectomy<50% | 7 | 7 | 0 | |
2: corpectomy>50% | 38 | 0 | 38 | |
3: spondylectomy | 9 | 0 | 9 |
Table 3.
Unadjusted OR (95% CI) | p-value | Adjusted OR∗ (95% CI) | p-value | |
---|---|---|---|---|
Without anterior support | 1.0 | 0.004 | 1.0 | 0.004 |
With anterior support | 1.527 (1.144 - 2.039) | 1.677 (1.179 - 2.387) |