Journal List > Int J Thyroidol > v.11(1) > 1095046

Park, Song, Lee, Lee, Jeon, Ko, Kim, and Kang: Diagnostic Performance of Shear Wave Elastography as Add-on Test in Thyroid Nodules: a Systematic Review and Meta-Analysis

초록

Background and Objectives

The diagnostic performance of shear wave elastography (SWE) combined with ultrasound (US) in the differential diagnosis of thyroid nodules was evaluated.

Materials and Methods

459 articles were collected using KoreaMed, Ovid-MEDLINE, Ovid-EMBASE, and Cochrane Library. The searching words were ‘{(elastography and shear).mp. OR SWE.mp. OR acoustic radiation force impulse.mp. OR ARFI.mp. OR acuson.mp. OR aixplorer.mp.}’. Two authors independently performed article selection and evaluation of the quality of studies with Scottish Intercollegiate Guidelines Network tool.

Results

2582 specimens (thyroid nodules) from 11 studies selected were included in this review. Combined use of US and SWE was reported higher specificity in five literatures, lower specificity in five studies, and no changes in 1 study when compared to US. We performed metaanalysis using data from 10 studies. The pooled sensitivity and specificity of US and SWE group for the differential diagnosis of benign and malignant nodules were 0.91 (I2=83.4%), 0.73 (I2=95.9%). The pooled sensitivity and specificity of US alone group were 0.88 (I2=93.2%), 0.71 (I2=92.7%).

Conclusion

SWE is not effective in the differential diagnosis of thyroid nodules to minimize unnecessary biopsy of nodules. The included studies showed significant heterogeneity of results.

REFERENCES

1). Yi GH. Updated guidelines for the management of thyroid nodule. Korean J Med. 2011; 80(2):158–61.
2). Park YJ, Hyun MK, Kang MJ, Shim JY, Lee JY, Kim KW, et al. Epidemiology of thyroid nodules in screening. Seoul, Korea: National Evidence Collaborating Agency;2015. p. 1–66.
3). Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin North Am. 2007; 36(3):707–35. vi.
crossref
4). Ross DS. Nonpalpable thyroid nodules–managing an epidemic. J Clin Endocrinol Metab. 2002; 87(5):1938–40.
crossref
5). Tan GH, Gharib H. Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med. 1997; 126(3):226–31.
crossref
6). Yi KH, Park YJ, Koong SS, Kim JH, Na DG, Ryu JS, et al. Revised Korean Thyroid Association Management Guidelines for patients with thyroid nodules and thyroid cancer. Endocrinol Metab. 2010; 25(4):270–97.
crossref
7). Tian W, Hao S, Gao B, Jiang Y, Zhang S, Guo L, et al. Comparison of diagnostic accuracy of realtime elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine (Baltimore). 2015; 94(52):e2312.
crossref
8). Xing P, Wu L, Zhang C, Li S, Liu C, Wu C. Differentiation of benign from malignant thyroid lesions: calculation of the strain ratio on thyroid sonoelastography. J Ultrasound Med. 2011; 30(5):663–9.
9). Zhang B, Ma X, Wu N, Liu L, Liu X, Zhang J, et al. Shear wave elastography for differentiation of benign and malignant thyroid nodules: a metaanalysis. J Ultrasound Med. 2013; 32(12):2163–9.
10). Tamsel S, Demirpolat G, Erdogan M, Nart D, Karadeniz M, Uluer H, et al. Power Doppler US patterns of vascularity and spectral Doppler US parameters in predicting malignancy in thyroid nodules. Clin Radiol. 2007; 62(3):245–51.
crossref
11). Cappelli C, Castellano M, Pirola I, Gandossi E, De Martino E, Cumetti D, et al. Thyroid nodule shape suggests malignancy. Eur J Endocrinol. 2006; 155(1):27–31.
crossref
12). Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng H. 1999; 213(3):203–33.
crossref
13). Lerner RM, Huang SR, Parker KJ. "Sonoelasticity" images derived from ultrasound signals in mechanically vibrated tissues. Ultrasound Med Biol. 1990; 16(3):231–9.
crossref
14). Dong FJ, Li M, Jiao Y, Xu JF, Xiong Y, Zhang L, et al. Acoustic radiation force impulse imaging for detecting thyroid nodules: a systematic review and pooled metaanalysis. Med Ultrason. 2015; 17(2):192–9.
crossref
15). Zhan J, Diao XH, Chai QL, Chen Y. Comparative study of acoustic radiation force impulse imaging with realtime elastography in differential diagnosis of thyroid nodules. Ultrasound Med Biol. 2013; 39(12):2217–25.
crossref
16). Scottish Intercollegiate Guidelines Network. SIGN methodology checklist. [cited February 4, 2018]. Available from. http://www.sign.ac.uk/checklists-and-notes.html.
17). Scottish Intercollegiate Guidelines Network. SIGN 50- a guideline developer's handbook. [cited February 4, 2018]. Available from. http://www.sign.ac.uk/assets/sign50_2015.pdf.
18). Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414):557–60.
crossref
19). Duan SB, Yu J, Li X, Han ZY, Zhai HY, Liang P. Diagnostic value of two-dimensional shear wave elastography in papillary thyroid microcarcinoma. Onco Targets Ther. 2016; 9:1311–7.
20). Wang F, Chang C, Gao Y, Chen YL, Chen M, Feng LQ. Does shear wave elastography provide additional value in the evaluation of thyroid nodules that are suspicious for malignancy? J Ultrasound Med. 2016; 35(11):2397–404.
crossref
21). Liu B, Liang J, Zheng Y, Xie X, Huang G, Zhou L, et al. Two-dimensional shear wave elastography as promising diagnostic tool for predicting malignant thyroid nodules: a prospective single-centre experience. Eur Radiol. 2015; 25(3):624–34.
crossref
22). Park AY, Son EJ, Han K, Youk JH, Kim JA, Park CS. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol. 2015; 84(3):407–12.
crossref
23). Kim H, Kim JA, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol. 2013; 23(9):2532–7.
crossref
24). Veyrieres JB, Albarel F, Lombard JV, Berbis J, Sebag F, Oliver C, et al. A threshold value in shear wave elastography to rule out malignant thyroid nodules: a reality? Eur J Radiol. 2012; 81(12):3965–72.
crossref
25). Kwak JY, Kim EK. Diagnostic performance of quantitative shear wave ultrasound elastography for thyroid cancer. J Korean Thyroid Assoc. 2011; 4(2):109–13.
26). Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010; 95(12):5281–8.
crossref
27). Xing P, Chen Q, Yang ZW, Liu CB, Wu CJ. Combination of conventional ultrasound and tissue quantification using acoustic radiation force impulse technology for differential diagnosis of small thyroid nodules. Int J Clin Exp Med. 2016; 9(5):8288–95.
28). Zhang YF, Xu JM, Xu HX, Liu C, Bo XW, Li XL, et al. Acoustic radiation force impulse elastography: a useful tool for differential diagnosis of thyroid nodules and recommending fine-needle aspiration: a diagnostic accuracy study. Medicine (Baltimore). 2015; 94(42):e1834.
29). Zhang YF, Xu HX, Xu JM, Liu C, Guo LH, Liu LN, et al. Acoustic radiation force impulse elastography in the diagnosis of thyroid nodules: useful or not useful? Ultrasound Med Biol. 2015; 41(10):2581–93.
crossref

Fig. 1.
Literature search flow diagram. SWE: shear wave elastography, US: ultrasonography.
ijt-11-31f1.tif
Fig. 2.
Forest plot of sensitivities for SWE+ US and US. CI: confidential interval, NA: not available, SWE: shear wave elastography, US: ultrasonography, VTI: virtual touch tissue imaging, VTQ: virtual touch tissue quantification
ijt-11-31f2.tif
Fig. 3.
Forest plot of specificities for SWE+ US and US. CI: confidential interval, NA: not available, SWE: shear wave elastography, US: ultrasonography, VTI: virtual touch tissue imaging, VTQ: virtual touch tissue quantification
ijt-11-31f3.tif
Table 1.
Details of search strategy
No. Search term Searched article
KoreaMed      
Index test 1 Shear wave elastography 25
  2 Shear elastography 26
Related article     1
Ovid MEDLINE      
Patient 1 thyroid$.mp. 191,633
Index test 2 (elastography and shear).mp. 1,154
  3 SWE.mp. 610
  4 acoustic radiation force impulse.mp. 528
  5 ARFI.mp. 481
  6 acuson.mp 378
  7 aixplorer.mp. 26
  8 OR/ 2-7 2,304
Patient & index test 9 1 AND 8 123
Total     123
Ovid EMBASE      
Patient 1 thyroid$.mp. 164,317
Index test 2 (elastography and shear).mp. 2,405
  3 SWE.mp. 1,118
  4 acoustic radiation force impulse.mp. 1,322
  5 ARFI.mp. 1,075
  6 acuson.mp 3,452
  7 aixplorer.mp. 339
  8 OR/ 2-7 7,082
Patient & index test 9 1 AND 8 274
Total     274
Cochrane Library      
Index test 1 Shear wave elastography 61
Total     61

ARFI: acoustic radiation force impulse, SWE: shear wave elastography

Table 2.
Levels of evidence (SIGN criteria)16,17)
1++ High quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias
1+ Well conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias
1− Meta-analyses, systematic reviews, or RCTs with a high risk of bias
2++ High quality systematic reviews of case control or cohort studies
  High quality case control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal
2+ Well conducted case control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal
2− Case control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal
3 Non-analytic studies, e.g. case reports, case series
4 Expert opinion

RCT: randomized controlled trial, SIGN: Scottish Intercollegiate Guidelines Network

Table 3.
Main characteristics of selected studies
Authors Country Publication year No. of case Shear wave elastography Reference standard Comparator Level of evidence
Patients/masses Device Parameter Diagnosis criteria
Duan et al.19) China 2016 118/137 Aixplorer E mean 34.5 kPa FNA/surgical US 2−
          E max 53.2 kPa      
Wang et al.20) China 2016 185/215 Aixplorer E mean 26.3 kPa FNA US 2++
          E max 65.0 kPa      
Liu et al.21) China 2015 271/331 Aixplorer E mean 39.3 kPa FNA/surgical US 2+
          E max 43.8 kPa      
Park et al.22) Korea 2015 453/476 Aixplorer E mean 85.2 kPa FNA/surgical US 2+
          E max 94.0 kPa      
Kim et al.23) Korea 2013 99/99 Aixplorer E mean 62.0 kPa FNA US 2+
          E max 65.0 kPa      
Veyrieres et al.24 4) France 2012 148/297 Aixplorer NA 66.0 kPa Surgical US 2+
Kwak and Kim25 ) Korea 2011 81/81 Aixplorer NA 33.3 kPa FNA US 2+
Sebag et al.26) France 2010 93/126 Aixplorer NA 65.0 kPa FNA/surgical US 2+
Xing et al.27) China 2016 86/90 ACUSON VTQ 2.57 m/s Surgical US 2+
Zhang et al.28) China 2015 556/556 ACUSON VTQ 2.87 m/s FNA US 2++
          VTI 4      
Zhang et al.29) China 2015 154/174 ACUSON VTQ 2.87 m/s Surgical US 2+
          VTI 4      

FNA: fine-needle aspiration biopsy, NA: not mentioned, US: ultrasonography, VTI: virtual touch tissue imaging, VTQ: virtual touch tissue quantification

Table 4.
Diagnostic accuracy of ultrasonography and combining shear wave elastography with ultrasonography
Authors Year No. of nodules Ultrasonography Shear wave elastography and ultrasonography
Se Sp PPV NPV Accuracy Parameter Diagnosis criteria Se Sp PPV NPV Accuracy
Device: Aixplorer
Duan et al.19) 2016 137 0.89 0.90 0.82 0.93 0.90 E max 53.2 kPa 0.96 0.95 0.90 0.98 0.95
E mean 34.5 kPa
Wang et al.20) 2016 215 0.82 0.76 0.94 0.48 0.81 E max 65.0 kPa 0.88 0.58 0.91 0.50 0.82
E mean 26.3 kPa 0.94 0.50 0.90 0.63 0.86
Liu et al.21) 2015 331 0.76 0.83 0.66 0.89 0.81 E max 43.8 kPa 0.87 0.74 0.59 0.93 0.78
E mean 39.3 kPa
Park et al.22) 2015 476 1.00 0.43 0.87 0.96 0.88 E max 94.0 kPa 0.95 0.55 0.89 0.74 0.87
E mean 85.2 kPa 0.95 0.57 0.90 0.74 0.87
Kim et al.23) 2013 99 0.91 0.60 0.38 0.96 0.67 E max 65.0 kPa 0.52 0.73 0.34 0.81 0.69
E mean 62.0 kPa 0.52 0.80 0.41 0.86 0.74
Veyrieres et al.24) 2012 297 0.77 0.58 0.20 0.95 0.60 E max 66.0 kPa 0.97 0.55 0.23 0.99 0.60
Kwak and Kim25) 2011 81 0.83 0.76 0.58 0.92 0.78 NA 33.3 kPa 0.96 0.48 0.48 0.97 0.62
Sebag et al.26) 2010 126 0.52 0.97 0.82 0.88 0.87 NA 65.0 kPa 0.82 0.97 0.88 0.95 0.94
Device: ACUSON
Xing et al.27) 2016 90 0.78 0.78 0.70 0.84 0.78 VTQ 2.57 m/s 1.00 0.56 0.60 1.00 0.73
Zhang et al.28) 2015 556 0.91 0.71 0.62 0.94 0.78 VTQ 2.87 m/s 0.85 0.92 0.85 0.92 0.90
VTI 4 (1-6) 0.80 0.82 0.69 0.89 0.81
Zhang et al.29) 2015 174 0.97 0.76 0.54 0.99 0.80 VTI 4 (1-6) 0.92 0.85 0.64 0.97 0.87

NA: not mentioned, NPV:negative predictive value, PPV: positive predictive value, Se: sensitivity, VTI: virtual touch tissue imaging, VTQ: virtual touch tissue quantification, Sp: specificity

No reported which parameter was used.

Table 5.
Pooled diagnostic accuracy of US and combining SWE with US
Pooled sensitivity Pooled specificity Pooled SROC
Aixplorer, E max (5 articles)      
US (n=1,418) 0.90 (95% CI 0.88-0.93) 0.65 (95% CI 0.62-0.69) 0.82 (±0.05)
  I2=95.8% I2=93.8%  
SWE+ US (n=1,418) 0.91 (95% CI 0.89-0.93) 0.63 (95% CI 0.60-0.67) 0.78 (±0.05)
  I2=88.9% I2=84.4%  
Aixplorer, E mean (3 articles)      
US (n=790) 0.94 (95% CI 0.92-0.96) 0.55 (95% CI 0.49-0.62) 0.84 (±0.04)
  I2=96.9% I2=85.3%  
SWE+ US (n=790) 0.93 (95% CI 0.91-0.95) 0.64 (95% CI 0.57-0.70) 0.79 (±0.04)
  I2=93.0% I2=85.9%  
Aixplorer, NA (2 articles)      
US (n=207) 0.66 (95% CI 0.51-0.79) 0.89 (95% CI 0.83-0.94) 0.50 (±0.00)
  I2=81.7% I2=94.0%  
SWE+ US (n=207) 0.88 (95% CI 0.76-0.95) 0.79 (95% CI 0.72-0.85) 0.50 (±0.00)
  I2=61.4% I2=98.2%  
ACUSON, VTQ (2 articles)      
US (n=646) 0.89 (95% CI 0.84-0.93) 0.72 (95% CI 0.68-0.76) 0.50 (±0.00)
  I2=79.9% I2=0.0%  
SWE+ US (n=646) 0.88 (95% CI 0.82-0.92) 0.88 (95% CI 0.84-0.91) 0.50 (±0.00)
  I2=90.5% I2=97.7%  
ACUSON, VTI (2 articles)      
US (n=730) 0.93 (95% CI 0.88-0.96) 0.73 (95% CI 0.68-0.76) 0.50 (±0.00)
  I2=51.7% I2=0.0%  
SWE+ US (n=730) 0.82 (95% CI 0.76-0.87) 0.83 (95% CI 0.79-0.86) 0.50 (±0.00)
  I2=75.2% I2=0.0%  

CI: confidential interval, SROC: the summary receiver operating characteristic curve, SWE: shear wave elastography, US: ultrasonography, VTI: virtual touch tissue imaging, VTQ: virtual touch tissue quantification

TOOLS
Similar articles