Journal List > J Rheum Dis > v.24(2) > 1094487

Lee and Song: Meta-analysis of Circulating Adiponectin, Visfatin, and Ghrelin Levels in Patients with Systemic Lupus Erythematosus

Abstract

Objective

To evaluate the association between circulating adiponectin, visfatin, and ghrelin levels and systemic lupus erythematosus (SLE).

Methods

We conducted a meta-analysis to compare serum/plasma adiponectin, visfatin, and ghrelin levels in patients with SLE to those of healthy controls.

Results

Eleven articles (822 patients with SLE and 676 controls) were included in the meta-analysis. The meta-analysis showed that the adiponectin level was significantly higher in the SLE group than in the control group (standardized mean difference [SMD]=0.360, 95% confidence interval [CI]=0.025∼0.695, p=0.035). Stratification according to region showed that high adiponectin levels were associated with SLE in the Western population (SMD=0.225, 95% CI=0.024∼0.426, p=0.028), but not in the South American population. A subgroup analysis that adiponectin level is significantly higher in the SLE group than in the control after adjustment for age, sex, body mass index, large sample size (n>100); and mean age>40 years (SMD=0.492, 95% CI=0.065∼0.920, p=0.024; SMD=0.492, 95% CI=0.065∼0.920, p=0.024; SMD=0.429, 95% CI=0.124∼0.733, p=0.006, respectively). Stratification by region showed significantly increased visfatin and ghrelin levels in the SLE group in Western and South American populations.

Conclusion

Our metaanalysis demonstrated that circulating adiponectin, visfatin, and ghrelin levels are significantly higher in SLE.

REFERENCES

1. Ruiz-Irastorza G, Khamashta MA, Castellino G, Hughes GR. Systemic lupus erythematosus. Lancet. 2001; 357:1027–32.
crossref
2. Shao WH, Cohen PL. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res Ther. 2011; 13:202.
crossref
3. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013; 9:191–200.
4. Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens). 2012; 11:8–20.
crossref
5. Cheng X, Folco EJ, Shimizu K, Libby P. Adiponectin induces proinflammatory programs in human macrophages and CD4+ T cells. J Biol Chem. 2012; 287:36896–904.
crossref
6. Lee YA, Ji HI, Lee SH, Hong SJ, Yang HI, Chul Yoo M, et al. The role of adiponectin in the production of IL-6, IL-8, VEGF and MMPs in human endothelial cells and osteoblasts: implications for arthritic joints. Exp Mol Med. 2014; 46:e72.
crossref
7. Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J Immunol. 2007; 179:5483–92.
8. Luk T, Malam Z, Marshall JC. Pre-B cell colony-enhancing factor (PBEF)/visfatin: a novel mediator of innate immunity. J Leukoc Biol. 2008; 83:804–16.
crossref
9. Brentano F, Schorr O, Ospelt C, Stanczyk J, Gay RE, Gay S, et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum. 2007; 56:2829–39.
crossref
10. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000; 141:4255–61.
11. Karmiris K, Koutroubakis IE, Kouroumalis EA. Leptin, adiponectin, resistin, and ghrelin–implications for inflammatory bowel disease. Mol Nutr Food Res. 2008; 52:855–66.
12. Barbosa Vde S, Francescantônio PL, Silva NA. Leptin and adiponectin in patients with systemic lupus erythematosus: clinical and laboratory correlations. Rev Bras Reumatol. 2015; 55:140–5.
13. McMahon M, Skaggs BJ, Grossman JM, Sahakian L, Fitzgerald J, Wong WK, et al. A panel of biomarkers is associated with increased risk of the presence and progression of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheumatol. 2014; 66:130–9.
crossref
14. Vadacca M, Zardi EM, Margiotta D, Rigon A, Cacciapaglia F, Arcarese L, et al. Leptin, adiponectin and vascular stiffness parameters in women with systemic lupus erythematosus. Intern Emerg Med. 2013; 8:705–12.
crossref
15. Reynolds HR, Buyon J, Kim M, Rivera TL, Izmirly P, Tunick P, et al. Association of plasma soluble E-selectin and adiponectin with carotid plaque in patients with systemic lupus erythematosus. Atherosclerosis. 2010; 210:569–74.
crossref
16. De Sanctis JB, Zabaleta M, Bianco NE, Garmendia JV, Rivas L. Serum adipokine levels in patients with systemic lupus erythematosus. Autoimmunity. 2009; 42:272–4.
crossref
17. Chung CP, Long AG, Solus JF, Rho YH, Oeser A, Raggi P, et al. Adipocytokines in systemic lupus erythematosus: relationship to inflammation, insulin resistance and coronary atherosclerosis. Lupus. 2009; 18:799–806.
crossref
18. Al M, Ng L, Tyrrell P, Bargman J, Bradley T, Silverman E. Adipokines as novel biomarkers in paediatric systemic lupus erythematosus. Rheumatology (Oxford). 2009; 48:497–501.
crossref
19. Sada KE, Yamasaki Y, Maruyama M, Sugiyama H, Yamamura M, Maeshima Y, et al. Altered levels of adipocytokines in association with insulin resistance in patients with systemic lupus erythematosus. J Rheumatol. 2006; 33:1545–52.
20. Rovin BH, Song H, Hebert LA, Nadasdy T, Nadasdy G, Birmingham DJ, et al. Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int. 2005; 68:1825–33.
crossref
21. Ozgen M, Koca SS, Aksoy K, Dagli N, Ustundag B, Isik A. Visfatin levels and intima-media thicknesses in rheumatic diseases. Clin Rheumatol. 2011; 30:757–63.
crossref
22. Kim HA, Choi GS, Jeon JY, Yoon JM, Sung JM, Suh CH. Leptin and ghrelin in Korean systemic lupus erythematosus. Lupus. 2010; 19:170–4.
crossref
23. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG. Associations between osteoprotegerin polymorphisms and bone mineral density: a meta-analysis. Mol Biol Rep. 2010; 37:227–34.
crossref
24. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG. PADI4 polymorphisms and rheumatoid arthritis susceptibility: a meta-analysis. Rheumatol Int. 2007; 27:827–33.
crossref
25. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG. Induction and maintenance therapy for lupus nephritis: a systematic review and meta-analysis. Lupus. 2010; 19:703–10.
crossref
26. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997; 40:1725.
crossref
27. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009; 6:e1000097.
crossref
28. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005; 5:13.
crossref
29. Ridout KK, Ridout SJ, Price LH, Sen S, Tyrka AR. Depression and telomere length: A meta-analysis. J Affect Disord. 2016; 191:237–47.
crossref
30. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Internet]. Ottawa (ON): Ottawa Hospital Research Institute;2000. [cited 2016]. Available from:. http://www.ohri.-ca/programs/clinical_epidemiology/oxford.asp.
31. McGough JJ, Faraone SV. Estimating the size of treatment effects: moving beyond p values. Psychiatry (Edgmont). 2009; 6:21–9.
32. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997; 315:1533–7.
crossref
33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7:177–88.
crossref
34. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21:1539–58.
crossref
35. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629–34.
crossref
36. Li HM, Zhang TP, Leng RX, Li XP, Li XM, Pan HF. Plasma/serum leptin levels in patients with systemic lupus erythematosus: a meta-analysis. Arch Med Res. 2015; 46:551–6.
crossref
37. Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev. 2013; 24:433–42.
crossref
38. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007; 178:1748–58.
crossref
39. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004; 114:57–66.
crossref
40. Korbonits M, Goldstone AP, Gueorguiev M, Grossman AB. Ghrelin–a hormone with multiple functions. Front Neu-roendocrinol. 2004; 25:27–68.
crossref

Figure 1.
Meta-analysis of the relationship between adiponectin and systemic lupus erythematosus (SLE) in all study subjects (A) and each study region (B). Std diff: standardized difference, CI: confidence interval.
jrd-24-99f1.tif
Figure 2.
Meta-analysis of the relationship between visfatin (A) or ghrelin (B) levels and systemic lupus erythematosus (SLE) in each study region. Std diff: standardized difference, CI: confidence interval.
jrd-24-99f2.tif
Figure 3.
Funnel plot of studies that examined the relationship between adiponectin and systemic lupus erythematosus (Egger regression p-value=0.894). Std diff: standardized difference, Std err: standardized error.
jrd-24-99f3.tif
Table 1.
Characteristics of individual studies included in the meta-analysis
Study Country Patient Age, yr BMI, kg/m2 Disease duration, yr Adipokines Adjustment* Quality score
SLE Control SLE Control SLE Control
Barbosa, 2015 [12] Brazil 52 33 33.4±9.4 32.5± 10.5 23.8+3.5 21.8+2.5 7.5 A Age 8
McMahon-1, 2014 [13] USA 142 72 39.6±13.5 40.5±11.8 25.7+5.9 23.7+5.1 11.4 + 8.0 A Age 7
McMahon-2, 2014 [13] USA 61 28 51.9±10.2 54.6± 10.1 28.0+7.1 25.3+5.8 14.9+11.4 A Age 7
Vadacca, 2013 [14] Italy 60 29 42.26±40.54 45.69± 11.57 25.2+4 24+4.6 10+5 A Age, gender, BMI 9
Reynolds, 2010 [15] USA 119 71 42.6±41.3 41.3 + 11.9 25.9+6.3 24.8+5.3 NA A Age, gender, BMI 8
De Sanctis, 2009 [16] Venezuela 60 60 36±6 32±12 24+2.7 22+2.0 NA A, V, G NA 6
Chung, 2009 [17] USA 109 78 40.2±11.5 40.5 + 12.0 29.2+7.5 27.0+6.0 8.2+7.3 A, V Age, gender 9
Al-1, 2009 [18] Canada 21 21 14.43±2.20 10.04 + 3.48 24.07+3.57 NA NA A, G Gender 7
Al-2, 2009 [18] Canada 84 56 14.32±2.67 10.04 + 3.48 23.76+5.30 NA NA A, G Gender 7
Sada, 2006 [19] Japan 37 80 44±15 44±6 22.1+3.5 22.2+3.2 9.4+7.1 A Age, gender, BMI 8
Rovin-1, 2005 [20] USA 18 39 47.9±7.21 33.5 + 10.6 32.6 + 6.36 25.9 + 5.09 NA A NA 6
Rovin-2, 2005 [20] USA 18 39 34.6±7.64 33.5 + 10.6 29.5 + 10.62 25.9 + 5.09 NA A NA 6
Ozgen, 2011 [21] Turkey 26 29 34.2±11.0 38.0+10.3 23.2+4.4 25.9+4.7 3.8 + 3.9 V BMI 7
Kim, 2010 [22] Korea 15 80 34.6±6.7 27.4+6.6 NA NA 47.41 +33.66* G Gender, BMI 8

Values are presented as number and mean±standard deviation. SLE: systemic lupus erythematosus, BMI: body mass index, NA: not available, A: adiponectin, V: visfatin, G: ghrelin, USA: United States of America.

* Matched or similar factors, or no statistical difference in variables between the SLE and control groups

months.

Table 2.
Meta-analysis of the adiponectin levels in patients with SLE compared to healthy controls
Group Population Number of study Test of association Test of heterogeneity
SMD* 95% CI p-value Model p-value I2
All Overall 12 0.360 0.025∼0.695 0.035 R 0.000 88.1
Region Western 9 0.225 0.024∼0.426 0.028 R 0.018 56.6
  South American 2 0.746 −1.571∼3.062 0.528 R 0.000 98.2
  Asian 1 0.993 0.583∼1.403 2.1×10−6 NA NA NA
Matched variables Yes 9 0.273 0.015∼0.531 0.008 R 0.000 71.4
  No 3 0.632 −0.808∼2.072 0.390 R 0.000 95.6
Sample size, n <100 4 0.082 −0.386∼0.550 0.731 R 0.010 73.3
  ≥100 8 0.492 0.065∼0.920 0.024 R 0.000 90.6
Mean age, yr <40 6 0.307 −0.336∼0.950 0.349 R 0.000 93.0
  ≥40 6 0.429 0.124∼0.733 0.006 R 0.003 72.1

SLE: systemic lupus erythematosus, SMD: standard mean difference, CI: confidence interval, R: random effects model, NA: not available.

* Magnitude of the Cohen's d effect size (SMD) (0.2∼0.5, small effect; 0.5∼0.8, medium effect; and ≥0.8, large effect)

age, sex, or body mass index.

Table 3.
Meta-analysis of visfatin and ghrelin levels in patients with SLE compared to healthy controls
Group Population Number of study Test of association Test of heterogeneity
SMD* 95% CI p-value Model p-value I2
Visfatin Overall 3 0.451 −0.000∼0.903 0.050 R 0.018 75.2
  Western 1 0.365 0.072∼0.658 0.015 NA NA NA
  South American 1 0.892 0.517∼1.267 3.2×10−6 NA NA NA
  Middle Eastern 1 0.025 −0.505∼0.554 0.927 NA NA NA
Ghrelin Overall 4 0.611 −0.383∼1.605 0.228 R 0.000 94.3
  Western 2 0.560 0.258∼0.861 2.7×10−4 F 0.170 46.9
  South American 1 2.000 1.562∼2.438 <1.0×10−8 NA NA NA
  Asian 1 −0.478 −1.034∼0.077 0.091 NA NA NA

SLE: systemic lupus erythematosus, SMD: standard mean difference, CI: confidence interval, R: random effects model, F: fixed effects model, NA: not available.

* Magnitude of the Cohen's d effect size (SMD) (0.2∼0.5, small effect; 0.5∼0.8, medium effect; and ≥0.8, large effect).

TOOLS
Similar articles