1. Gavini G, Pessoa OF, Barletta FB, Vasconcellos MA, Caldeira CL. Cyclic fatigue resistance of rotary nickel-titanium instruments submitted to nitrogen ion implantation. J Endod. 2010; 36:1183–1186.
2. Yum J, Cheung GS, Park JK, Hur B, Kim HC. Torsional strength and toughness of nickel-titanium rotary files. J Endod. 2011; 37:382–386.
3. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006; 32:1031–1043.
4. Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, Rapisarda E, La Rosa G. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments. Int Endod J. 2015; 48:1043–1050.
5. Cheung GS. Instrument fracture: mechanisms, removal of fragments, and clinical outcomes. Endod Topics. 2007; 16:1–26.
6. Pruett JP, Clement DJ, Carnes DL Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997; 23:77–85.
7. Haïkel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 1999; 25:434–440.
8. Bryant ST, Thompson SA, Al-Omari MA, Dummer PM. Shaping ability of Profile rotary nickel-titanium instruments with ISO sized tips in simulated root canals: part 1. Int Endod J. 1998; 31:275–281.
9. Ounsi HF, Al-Shalan T, Salameh Z, Grandini S, Ferrari M. Quantitative and qualitative elemental analysis of different nickel-titanium rotary instruments by using scanning electron microscopy and energy dispersive spectroscopy. J Endod. 2008; 34:53–55.
10. Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod. 2014; 40:1451–1453.
11. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Fatigue testing of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011; 37:997–1001.
14. Pedullà E, Genovesi F, Rapisarda S, La Rosa GRM, Grande NM, Plotino G, Adorno CG. Effects of 6 single-file systems on dentinal crack formation. J Endod. 2017; 43:456–461.
15. Gambarini G, Gergi R, Grande NM, Osta N, Plotino G, Testarelli L. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions. Aust Endod J. 2013; 39:151–154.
16. Pedullà E, Plotino G, Grande NM, Scibilia M, Pappalardo A, Malagnino VA, Rapisarda E. Influence of rotational speed on the cyclic fatigue of Mtwo instruments. Int Endod J. 2014; 47:514–519.
17. Chang SW, Shim KS, Kim YC, Jee KK, Zhu Q, Perinpanayagam H, Kum KY. Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of V taper 2 and V taper 2H rotary NiTi files. Scanning. 2016; 38:564–570.
18. Gao Y, Shotton V, Wilkinson K, Phillips G, Johnson WB. Effects of raw material and rotational speed on the cyclic fatigue of ProFile Vortex rotary instruments. J Endod. 2010; 36:1205–1209.
19. Kramkowski TR, Bahcall J. An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and Profile GT Series X rotary nickel-titanium files. J Endod. 2009; 35:404–407.
20. Ha JH, Kim SK, Cohenca N, Kim HC. Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. J Endod. 2013; 39:389–393.
21. Choi J, Oh S, Kim YC, Jee KK, Kum K, Chang S. Fracture resistance of K3 nickel-titanium files made from different thermal treatments. Bioinorg Chem Appl. 2016; 2016:6374721.
22. Shen Y, Zhou H, Zheng Y, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod. 2011; 37:1566–1571.
23. de Vasconcelos RA, Murphy S, Carvalho CA, Govindjee RG, Govindjee S, Peters OA. Evidence for reduced fatigue resistance of contemporary rotary instruments exposed to body temperature. J Endod. 2016; 42:782–787.
24. Kusy RP. A review of contemporary archwires: their properties and characteristics. Angle Orthod. 1997; 67:197–207.
25. Ninan E, Berzins DW. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments. J Endod. 2013; 39:101–104.
26. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M. Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments. J Endod. 2012; 38:376–380.
27. Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, Rapisarda E. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016; 42:156–159.
28. Wu SK, Lin HC, Chou TS. A study of electrical resistivity, internal friction and shear modulus on an aged Ti49Ni51 alloy. Acta Metall Mater. 1990; 38:95–102.
29. Peters OA, Barbakow F. Dynamic torque and apical forces of ProFile 0.04 rotary instruments during preparation of curved canals. Int Endod J. 2002; 35:379–389.
30. Bahia MG, Buono VT. Decrease in the fatigue resistance of nickel–titanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 100:249–255.
31. Plotino G, Grande NM, Testarelli L, Gambarini G. Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int Endod J. 2012; 45:614–618.
32. Park SY, Cheung GS, Yum J, Hur B, Park JK, Kim HC. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod. 2010; 36:1200–1204.