Journal List > Korean J Health Promot > v.16(4) > 1089893

Park, Kim, Yoon, Kim, Choi, Lee, and Ju: Correlation between Coarse Airborne Particulate Matter and Mortality Rates of Malignant Neoplasm

Abstract

Background

There have been growing interests in harmful effects of dust particles on human health. It has been reported that dust particles negatively affected respiratory and cardiovascular systems. Relationship of dust particles and lung cancer incidence was also investigated. However, there is a lack of studies regarding the relationship between dust particles and cancers except for lung cancer. Therefore, this study aimed to determine the relationship of dust particle concentration and cancer mortality in Korea.

Methods

Average concentration of coarse dust particles (particulate matter 10, PM10) of 2008–2014 were obtained from AirKorea website and cancer mortality was found in Statistics Korea for 2008–2014. Correlation analyses using PM10 and cancer mortality were performed. Age-adjusted death rate (AADR) was used for correlation analysis because a number of death and mortality rate do not reflect population and age of death. Regional annual PM10 was matched with AADR of identical area. Correlation between two variables was presented in scatter plots and Pearson's correlation analysis was performed.

Results

PM10 concentration was positively correlated with AADR of malignant neoplasm, lung cancer, stomach cancer, colon cancer, uterus cancer, and leukemia. PM10 concentration was significantly correlated with AADR of malignant neoplasm (r=0.247, P=0.009), lung cancer (r=0.277, P=0.003), stomach cancer (r=0.434, P=0.000), colon cancer (r=0.377, P=0.000), and uterus cancer (r=0.226, P=0.017).

Conclusion

This study suggested that cancer patients or high-risk group for cancer should pay attention to PM10 concentration. Large-scale studies should investigate the relationship of PM10 concentration and cancer incidence including cancer mortality to extend understanding of this cross-section study.

References

1. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Outdoor Air Pollution. Lyon: International Agency for Research on Cancer;2014.
2. World Health Organization. WHO's Ambient Air Pollution database: Update 2014. Geneva: World Health Organization;2014.
3. Hsu A, Emerson J, Levy M, de Sherbinin A, Johnson L, Malik O, et al. The 2014 environmental performance index. New Haven: Yale Center for Environmental Law and Policy;2014. p. 4701–35.
4. Ristovski ZD, Miljevic B, Surawski NC, Morawska L, Fong KM, Goh F, et al. Respiratory health effects of diesel particulate matter. Respirology. 2012; 17(2):201–12.
crossref
5. Dockery DW, Pope CA 3rd. Acute respiratory effects of particulate air pollution. Annu Rev Pub Health. 1994; 15:107–132.
6. Schwartz J. What are people dying of on high air pollution days? Environ Res. 1994; 64(1):26–35.
crossref
7. Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, et al. Short-term effects of ambient Sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. Air Pollution and Health: a European Approach. BMJ. 1997; 314(7095):1658–63.
8. Bateson TF, Schwartz J. Who is sensitive to the effects of particulate air pollution on mortality? A case-crossover analysis of effect modifiers. Epidemiology. 2004; 15(2):143–9.
9. Kwon HJ, Cho SH, Nyberg F, Pershagen G. Effects of ambient air pollution on daily mortality in a cohort of patients with congestive heart failure. Epidemiology. 2001; 12(4):413–9.
crossref
10. Hystad P, Demers PA, Johnson KC, Carpiano RM, Brauer M. Long-term residential exposure to air pollution and lung cancer risk. Epidemiology. 2013; 24(5):762–72.
crossref
11. She J, Yang P, Hong Q, Bai C. Lung cancer in China: challenges and interventions. Chest. 2013; 143(4):1117–26.
12. Evans J, van Donkelaar A, Martin RV, Burnett R, Rainham DG, Birkett NJ, et al. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res. 2013; 120:33–42.
crossref
13. Salvador P, Artiñano B, Querol X, Alastuey A. A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: the Madrid air basin, a case study. Sci Total Environ. 2008; 390(2–3):495–506.
crossref
14. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013; 14(9):813–22.
15. Chen X, Zhang LW, Huang JJ, Song FJ, Zhang LP, Qian ZM, et al. Long-term exposure to urban air pollution and lung cancer mortality: a 12-year cohort study in Northern China. Sci Total Environ. 2016; 571:855–61.
crossref
16. Seagrave J. Mechanisms and implications of air pollution particle associations with chemokines. Toxicol Appl Pharmacol. 2008; 232(3):469–77.
crossref
17. Totlandsdal AI, Cassee FR, Schwarze P, Refsnes M, Låg M. Diesel exhaust particles induce CYP1A1 and proinflammatory responses via differential pathways in human bronchial epithelial cells. Part Fibre Toxicol. 2010; 7:41.
crossref
18. Kang CM, Jang AS, Ahn MH, Shin JA, Kim JH, Choi YS, et al. Interleukin-25 and interleukin-13 production by alveolar macrophages in response to particles. Am J Respir Cell Mol Biol. 2005; 33(3):290–6.
crossref
19. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995; 345(8943):176–8.
crossref
20. Zelikoff JT, Chen LC, Cohen MD, Fang K, Gordon T, Li Y, et al. Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense. Inhal Toxicol. 2003; 15(2):131–50.
crossref
21. Malik AI, Storey KB. Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress. Gene. 2011; 485(2):114–9.
crossref

Figure 1.
Changes in annual average of coarse particles (particulate matter 10: particles whose aerodynamic diameters are less than or equal to 10 µm).
kjhp-16-215f1.tif
Figure 2.
Pearson's correlation analysis of PM10 (particulate matter 10: particles whose aerodynamic diameters are less than or equal to 10 µm) concentrationand age adjusted death rates of malignant neoplasms, lung cancer, stomach cancer, colon cancer, uterus cancer, and leukemia.
kjhp-16-215f2.tif
Table 1.
Number of death, death rate, age adjusted death rate of cancera
  Year Number of regions Number of death Death rateb Age adjusted death ratec
Malignant 2008 16 4307.0±3343.9 150.8±35.0 126.7±8.8
neoplasms 2009 16 4361.2±3424.8 151.8±35.0 122.7±9.2
  2010 16 4503.0±3572.5 156.7±36.5 121.1±6.1
  2011 16 4473.7±3572.6 154.6±34.6 115.3±6.0
  2012 16 4596.5±3707.0 158.5±34.8 113.6±5.1
  2013 16 4694.4±3837.7 160.7±32.3 110.6±4.8
  2014 16 4773.6±3893.9 162.7±35.3 107.2±5.3
  Total 112 4529.9±3530.8 156.5±34.1 116.7±9.2
Lung cancer 2008 16 924.4±691.3 32.8±9.9 26.8±3.1
  2009 16 932.4±684.1 33.1±10.4 25.9±3.3
  2010 16 976.6±726.7 34.6±9.7 26.1±2.4
  2011 16 991.7±761.1 35.0±9.8 25.1±2.0
  2012 16 1037.5±797.8 36.3±10.0 25.1±2.2
  2013 16 1070.3±816.4 37.7±9.3 24.9±1.7
  2014 16 1086.6±836.9 37.6±10.2 23.9±2.2
  Total 112 1002.8±742.8 35.3±9.8 25.4±2.6
Stomach cancer 2008 16 644.5±484.1 22.8±5.7 19.2±2.2
  2009 16 633.4±485.6 22.1±5.7 17.7±1.9
  2010 16 626.9±489.0 22.0±5.6 16.9±1.7
  2011 16 607.4±469.1 21.1±5.3 15.7±2.0
  2012 16 581.7±463.9 20.0±5.2 14.2±1.8
  2013 16 571.9±460.3 19.6±4.4 13.5±1.3
  2014 16 554.8±431.7 19.2±4.6 12.6±1.1
  Total 112 602.9±457.7 21.0±5.3 15.7±2.8
Colon cancer 2008 16 428.4±353.0 14.9±2.8 12.6±1.4
  2009 16 444.1±381.0 15.0±3.1 12.2±1.4
  2010 16 481.3±418.0 16.1±3.5 12.3±1.5
  2011 16 482.6±407.5 16.4±3.3 12.1±1.3
  2012 16 511.1±432.8 17.4±3.7 12.1±0.8
  2013 16 515.3±442.5 17.5±3.5 11.8±1.0
  2014 16 523.3±441.7 17.7±3.7 11.3±1.2
  Total 112 483.7±402.2 16.4±3.5 12.1±1.3
Uterus cancer 2008 16 78.8±68.5 2.7±0.5 2.3±0.3
  2009 16 78.6±66.3 2.6±0.6 2.2±0.5
  2010 16 79.5±74.3 2.6±0.5 2.1±0.4
  2011 16 80.9±68.3 2.7±0.6 2.1±0.3
  2012 16 75.9±69.3 2.6±0.4 2.0±0.4
  2013 16 76.8±71.5 2.5±0.6 1.8±0.3
  2014 16 80.9±74.0 2.7±0.5 2.0±0.3
  Total 112 78.8±68.5 2.6±0.5 2.1±0.4
Leukemia 2008 16 94.2±82.0 3.2±0.7 2.9±0.4
  2009 16 96.4±87.5 3.2±0.7 2.8±0.5
  Total 32 95.3±83.4 3.2±0.7 2.8±0.5

a Values are means±standard deviation.

b Per 100,000.

c Per standardized population100,000.

Table 2.
Kendall's tau-b correlation coefficient of PM10 (particulate matter 10: particles whose aerodynamic diameters are less han or equal to 10 µm)concentrationand age adjusted death rates of cancer in regions of South Korea from 2008 to 2014
  Malignant Lung Stomach Colon Liver Uterus Meninges and brain Esophagus Breast Prostate Pancreas
  neoplasm cancer cancer cancer cancer cancer cancer cancer cancer cancer cancer
  CCa P CCa P CCa P CCa P CCa P CCa P CCa P CCa P CCa P CCa P CCa P
Seoul 0.810b 0.011 –0.048 0.881 0.714b 0.024 0.429 0.176 0.905b 0.004 0.350 0.282 0.169 0.622 0.126 0.724 –0.050 0.878 0.050 0.878 –0.429 0.176
Busan 0.514 0.117 0.206 0.530 0.514 0.117 –0.053 0.874 0.514 0.117 0.649 0.055 0.264 0.428 –0.433 0.200 0.252 0.480 0.114 0.741 –0.206 0.530
Daegu 0.781b 0.015 0.586 0.068 0.781b 0.015 0.488 0.129 0.450 0.167 0.250 0.442 –0.616 0.062 –0.369 0.267 –0.098 0.761 –0.410 0.214 –0.250 0.442
Daejeon 0.586 0.068 0.685b 0.041 0.488 0.129 0.650b 0.046 0.195 0.543 0.350 0.282 –0.103 0.756 0.050 0.878 0.150 0.645 0.100 0.759 –0.195 0.543
Gwangju 0.810b 0.011 0.000 1.000 0.781b 0.015 –0.206 0.530 0.524 0.099 0.098 0.761 0.150 0.645 0.150 0.645 –0.350 0.282 –0.250 0.442 –0.143 0.652
Incheon 0.683b 0.033 0.586 0.068 0.586 0.068 0.098 0.761 0.550 0.091 0.564 0.087 0.158 0.634 –0.205 0.534 –0.293 0.362 0.150 0.645 –0.150 0.645
Ulsan 0.651b 0.046 0.651b 0.046 0.951b 0.003 0.851b 0.009 0.651b 0.046 0.108 0.751 0.158 0.637 0.308 0.351 0.053 0.875 0.053 0.875 0.250 0.442
Chungcheongnam-do 0.683b 0.033 0.488 0.129 0.878b 0.006 0.390 0.224 0.781b 0.015 0.000 1.000 –0.256 0.437 0.154 0.641 –0.450 0.167 0.150 0.645 –0.250 0.442
Chungcheongbuk-do 0.451 0.167 0.410 0.214 0.551 0.091 0.718b 0.030 0.551 0.091 –0.050 0.878 –0.053 0.875 0.308 0.351 0.000 1.000 –0.410 0.214 0.150 0.645
Gangwon-do 0.451 0.167 –0.050 0.878 0.451 0.167 –0.513 0.120 0.551 0.091 0.462 0.162 0.000 1.000 0.000 1.000 –0.103 0.756 –0.223 0.517 0.308 0.351
Gyeonggi-do 0.751b 0.021 0.551 0.091 0.751b 0.021 0.433 0.200 0.651b 0.046 0.632 0.059 0.237 0.502 0.723b 0.035 –0.263 0.432 0.178 0.608 –0.501 0.145
Gyeongsangnam-do –0.053 0.874 –0.159 0.634 –0.053 0.874 –0.159 0.634 –0.053 0.874 –0.053 0.874 0.325 0.336 –0.217 0.521 0.000 1.000 0.457 0.190 0.651 0.054
Gyeongsangbuk-do 0.195 0.543 0.098 0.761 0.195 0.543 –0.205 0.534 0.050 0.878 –0.050 0.878 –0.308 0.351 0.308 0.351 0.195 0.543 0.450 0.167 0.350 0.282
Jeju-do 0.000 1.000 –0.150 0.645 0.683b 0.033 –0.195 0.543 0.390 0.224 –0.154 0.641 –0.350 0.282 –0.158 0.634 –0.350 0.282 –0.350 0.282 –0.050 0.878
Jeollabuk-do 0.619 0.051 0.810b 0.011 0.714b 0.024 –0.524 0.099 0.619 0.051 0.514 0.117 –0.411 0.210 0.651b 0.046 –0.150 0.645 –0.429 0.176 –0.048 0.881
Jeollanam-do 0.053 0.874 0.265 0.427 0.265 0.427 0.108 0.748 0.108 0.748 –0.294 0.403 –0.217 0.521 0.250 0.481 –0.217 0.521 0.217 0.521 –0.171 0.620

Kendall's tau-b (τb) correlation coefficient.

b Statistically significant correlation.

TOOLS
Similar articles