Journal List > Korean J Health Promot > v.15(3) > 1089876

Kim, Kim, Uh, Choi, Lee, and Jeong: The Relationship between Uric Acid and Homocysteine Levels based on Alcohol-related Facial Flushing

Abstract

Background

This study aimed to determine the correlation between blood uric acid and homocysteine levels, based on alcohol-related facial flushing.

Methods

Among male adults who visited a health examination center of a university hospital located in Daejeon, Korea, for a personal health examination from March 2013 to February 2014, 702 subjects were analyzed including 401 subjects without alcohol-related facial flushing and 301 with facial flushing. Pearson’s correlation and stepwise multivariate linear regression analyses were performed between the log homocysteine levels and other variables including uric acid.

Results

Uric acid showed a significant positive correlation with log homocysteine (γ =0.166, P=0.001) (ß=0.176; P=0.001) in the non-flushing group. In contrast, none of the variables showed any significant correlations with log homocysteine in the flushing group.

Conclusions

Alcohol users not exhibiting alcohol-related facial flushing showed a positive correlation between uric acid and homocysteine levels, whereas those without facial flushing showed no such correlation.

REFERENCES

1.Iseki K., Ikemiya Y., Inoue T., Iseki C., Kinjo K., Takishita S. Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis. 2004. 44(4):642–50.
crossref
2.Feig DI., Soletsky B., Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008. 300(8):924–32.
3.Strasak A., Ruttmann E., Brant L., Kelleher C., Klenk J., Concin H, et al. Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83,683 Austrian men. Clin Chem. 2008. 54(2):273–84.
4.Nakagawa T., Hu H., Zharikov S., Tuttle KR., Short RA., Glushakova O, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006. 290(3):F625–31.
crossref
5.Khanna D., Fitzgerald JD., Khanna PP., Bae S., Singh MK., Neogi T, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken). 2012. 64(10):1431–46.
crossref
6.Roddy E., Doherty M. Epidemiology of gout. Arthritis Res Ther. 2010. 12(6):223.
7.Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999. 19:217–46.
crossref
8.McCully KS. Homocysteine and vascular disease. Nat Med. 1996. 2(4):386–9.
crossref
9.Eikelboom JW., Lonn E., Genest J Jr., Hankey G., Yusuf S. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med. 1999. 131(5):363–75.
crossref
10.Refsum H., Ueland PM., Nygård O., Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998. 49(1):31–62.
crossref
11.Nygård O., Vollset SE., Refsum H., Brattström L., Ueland PM. Total homocysteine and cardiovascular disease. J Intern Med. 1999. 246(5):425–54.
crossref
12.Marti F., Vollenweider P., Marques-Vidal PM., Mooser V., Waeber G., Paccaud F, et al. Hyperhomocysteinemia is independently associated with albuminuria in the population-based CoLaus study. BMC Public Health. 2011. 11:733.
crossref
13.Malinow MR., Levenson J., Giral P., Nieto FJ., Razavian M., Segond P, et al. Role of blood pressure, uric acid, and hemorheo-logical parameters on plasma homocyst(e)ine concentration. Atherosclerosis. 1995. 114(2):175–83.
crossref
14.Tsutsumi Z., Moriwaki Y., Yamamoto T., Takahashi S., Hada T., Fukuchi M. Total plasma homocysteine is not increased in Japanese patients with gout. J Rheumatol. 2002. 29(8):1805–6.
15.Choi ST., Kim JS., Song JS. Elevated serum homocysteine levels were not correlated with serum uric acid levels, but with decreased renal function in gouty patients. J Korean Med Sci. 2014. 29(6):788–92.
crossref
16.Crabb DW., Matsumoto M., Chang D., You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc. 2004. 63(1):49–63.
crossref
17.Suh HS., Kim JS., Kim SS., Jung JG., Yoon SJ., Ahn JB. Influence of the Flushing Response in the Relationship between Alcohol Consumption and Cardiovascular Disease Risk. Korean J Fam Med. 2014. 35(6):295–302.
crossref
18.Jung JG., Kim JS., Kim YS., Oh MK., Yoon SJ. Hypertension associated with alcohol consumption based on the facial flushing reaction to drinking. Alcohol Clin Exp Res. 2014. 38(4):1020–5.
crossref
19.Keys A., Fidanza F., Karvonen MJ., Kimura N., Taylor HL. Indices of relative weight and obesity. J Chronic Dis. 1972. 25(6):329–43.
crossref
20.National Institute on Alcohol Abuse and Alcoholism. Alcohol screening and brief intervention for youth: A practitioner's guide. Rockville, MD: National Institute on Alcohol Abuse and Alcoholism;2011. [Accessed February 28, 2015].http://pubs.niaaa.nih.gov/publications/Practitioner/YouthGuide/YouthGuide.pdf.
21.Yokoyama A., Muramatsu T., Ohmori T., Kumagai Y., Higuchi S., Ishii H. Reliability of a flushing questionnaire and the ethanol patch test in screening for inactive aldehyde dehydrogenase-2 and alcohol-related cancer risk. Cancer Epidemiol Biomarkers Prev. 1997. 6(12):1105–7.
22.Levey AS., Stevens LA., Schmid CH., Zhang YL., Castro AF 3rd., Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009. 150(9):604–12.
crossref
23.Kim EC., Kim JS., Jung JG., Kim SS., Yoon SJ., Ryu JS. Effect of alcohol consumption on risk of hyperhomocysteinemia based on alcohol-related facial flushing response. Korean J Fam Med. 2013. 34(4):250–7.
crossref
24.Emmerson B. Hyperlipidaemia in hyperuricaemia and gout. Ann Rheum Dis. 1998. 57(9):509–10.
crossref
25.Meigs JB., Jacques PF., Selhub J., Singer DE., Nathan DM., Rifai N, et al. Fasting plasma homocysteine levels in the insulin resistance syndrome: the Framingham offspring study. Diabetes Care. 2001. 24(8):1403–10.
26.Papezikova I., Pekarova M., Lojek A., Kubala L. The effect of uric acid on homocysteine-induced endothelial dysfunction in bovine aortic endothelial cells. Neuro Endocrinol Lett. 2009. 30(Suppl 1):112–5.
27.Hayden MR., Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and athe-roscleropathy: the pleiotropic effects of folate supplementation. Nutr J. 2004. 3:4.
crossref
28.Nieto FJ., Iribarren C., Gross MD., Comstock GW., Cutler RG. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000. 148(1):131–9.
crossref
29.Fang J., Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA. 2000. 283(18):2404–10.
30.Barak AJ., Beckenhauer HC., Tuma DJ. Methionine synthase. a possible prime site of the ethanolic lesion in liver. Alcohol. 2002. 26(2):65–7.
31.Brecher AS., Lehti MD. A hypothesis linking hypoglycemia, hyperuricemia, lactic acidemia, and reduced gluconeogenesis in al-coholics to inactivation of glucose-6-phosphatase activity by acetaldehyde. Alcohol. 1996. 13(6):553–7.
crossref

Table 1.
Characteristics of study subjectsa
Non-flushing group (n=401) Flushing group (n=301)
Age, y 51.2±9.5 51.7±9.4
Body mass index, kg/m2 25.2±3.2 25.3±2.8
Hypertension 92 (22.9) 69 (22.9)
Diabetes 25 (6.2) 25 (8.3)
Current-smoking 236 (58.9) 165 (54.8)
Drinking amount, drinks/wk 12.5 (4.0-20.0)b 7.5 (2.3-19.8)b
Uric acid, mg/dL 6.4±1.3 6.3±1.3
Homocysteine, μmol/L 11.5 (9.8-13.4) 11.7 (10.3-13.3)
Total-cholesterol, mg/dL 195.8±35.6 191.8±35.8
LDL-C, mg/dL 111.5±30.5 110.0±30.1
HDL-C, mg/dL 48.0 (42.0-54.0)c 46.0 (40.0-52.0)c
Triglyceride, mg/dL 144.0 (95.5-206.0) 138.0 (98.5-202.5)
AST, mg/dL 23.0 (19.0-28.0) 23.0 (20.0-30.0)
ALT, mg/dL 26.0 (20.0-35.0) 27.0 (20.0-39.0)
γ-GTP, mg/dL 31.0 (19.5-60.5) 33.0 (20.0-58.0)
eGFR, mL/min/1.73 m2 92.1 (82.9-104.1) 92.1 (82.6-103.8)

Abbreviations: AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ-GTP, gamma-glutamyl transferase; eGFR, estimated glomerular filtration rate; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol.

a Values are presented as N (%) or mean±SD or median expression (interquartile range).

b <0.001, analysis with Mann-Whitney test or chi-square test (1 drink=alcohol 14 g).

c <0.05, analysis with Mann-Whitney test or chi-square test.

Table 2.
Correlations between log homocysteine and other variables (non adjusted)
Non-flushing group (n=401) Flushing group (n=301)
r r
Age 0.070 0.043
BMI -0.064 -0.093
Total cholesterol 0.111a 0.019
LDL-C 0.088 -0.004
Log HDL-C 0.068 -0.013
Log TG -0.024 0.045
Uric acid 0.166b 0.087
Log AST 0.038 0.052
Log ALT Log r-GTP -0.055 0.091 -0.085 -0.014

Abbreviations: r, correlation coefficient; BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ -GTP, gamma-glutamyl transferase; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglyceride.

a <0.05 analysis of variance with Pearson’s correlation test.

b <0.01 analysis of variance with Pearson’s correlation test.

Table 3.
Log homocysteine by amount of alcohol
Drinks/wk Non-flushing group (n) Flushing group (n)
≥0.5, <4 2.5±0.3 (84) 2.5±0.2 (102)
≥4, <8 ≥8 2.5±0.2 (70) 2.5±0.3 (247) 2.5±0.3 (62) 2.5±0.2 (137)

Values are presented as mean±SD.

TOOLS
Similar articles