Abstract
Background
Several studies have found an association between decreased respiratory function and renal impairment in those with chronic kidney disease. The relationship has not been investigated for healthy smokers. The aim of this study was to examine the association between respiratory function and renal function according to smoking status in Korean male population.
Methods
From the 5th Korean National Health and Nutrition Examination Survey (KNHANES), we enrolled 1246 male participants who were 40 years or older. As a cross‐sectional study, the association between respiratory function and renal function were analysed depending on the ’ smoking status. Pearson correlation analysis was used to find the association between respiratory function and renal impairment. Covariance Analysis allowed to compare renal function (albuminuria, eGFR) with respiratory function (FEV1, FVC) according to smoking status.
Results
Regardless of smoking status, there was a negative correlation between respiratory function (FEV1 and FVC) and urinary albumin to creatinine ratio (LogUACR), and positive correlation between respiratory function (FEV1 and FVC) and estimated glomerular filtration rate (eGFR). Smokers have lower FEV1 and FVC in case they have albuminuria, after adjusting for covariant (P=0.012, P=0.010, respectively).
REFERENCES
2.Korea health statistics 2010. The 5th Korea National Health and Nutrition Examination Survey (KNHANESV–1). Cheongju: Korea Centers for Disease Control and Prevention;2010. [Accessed July 15, 2013].https://knhanes.cdc.go.kr/knhanes/index.do.
3.Song HR., Kim CH. Epidemiology of the smoking–related diseases in Korea. J Korean Acad Fam Med. 2008. 29(8):563–71.
4.Gambaro G., Verlato F., Budakovic A., Casara D., Saladini G., Del Prete D, et al. Renal impairment in chronic cigarette smokers. J Am Soc Nephrol. 1998. 9(4):562–7.
5.Noborisaka Y. Smoking and chronic kidney disease in healthy populations. Nephrourol Mon. 2013. 5(1):655–67.
6.Locatelli F., Vecchio LD., Pozzoni P. The importance of early detection of chronic kidney disease. Nephrol Dial Transplant. 2002. 17(Suppl 11):2–7.
7.Stevens PE., Levin A. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013. 158(11):825–30.
8.Jafar TH., Chaturvedi N., Hatcher J., Levey AS. Use of albumin creatinine ratio and urine albumin concentration as a screening test for albuminuria in an Indo–Asian population. Nephrol Dial Transplant. 2007. 22(8):2194–200.
9.Tkácová R., Tkác I., Podracký J., Moscovic P., Roland R., Hildebrand T. Spirometric alterations in patients with reduced renal function. Wien Klin Wochenschr. 1993. 105(1):21–4.
10.Yoon JH., Won JU., Ahn YS., Roh J. Poor lung function has inverse relationship with microalbuminuria, an early surrogate marker of kidney damage and atherosclerosis: the 5th Korea National Health and Nutrition Examination Survey. PLoS One. 2014. 9(4):e94125.
11.Casanova C., de Torres JP., Navarro J., Aguirre–Jaíme A., Toledo P., Cordoba E, et al. Microalbuminuria and hypoxemia in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010. 182(8):): 1004–10.
12.Miller MR., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005. 26(2):319–38.
13.Choi JK., Paek D., Lee JO. Normal predictive values of Spirometry in Korean population. Tuberc Respir Dis. 2005. 58(3):230–42.
14.Levey AS., Bosch JP., Lewis JB., Greene T., Rogers N., Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med. 1999. 130(6):461–70.
15.National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002. 39(2 Suppl 1):): S1–266.
16.Anand S., Khanam MA., Saquib J., Saquib N., Ahmed T., Alam DS, et al. High prevalence of chronic kidney disease in a community survey of urban Bangladeshis: a cross–sectional study. Global Health. 2014. 10:9.
17.Pinto–Sietsma SJ., Mulder J., Janssen WM., Hillege HL., de Zeeuw D., de Jong PE. Smoking is related to albuminuria and abnormal renal function in nondiabetic persons. Ann Intern Med. 2000. 133:585–91.
18.Maeda I., Hayashi T., Sato KK., Koh H., Harita N., Nakamura Y, et al. Cigarette smoking and the association with glomerular hy-perfiltration and proteinuria in healthy middle–aged men. Clin J Am Soc Nephrol. 2011. 6(10):2462–9.
19.Shankar A., Klein R., Klein BE. The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol. 2006. 164(3):263–71.
20.Yamagata K., Ishida K., Sairenchi T., Takahashi H., Ohba S., Shiigai T, et al. Risk factors for chronic kidney disease in a com-munity–based population: a 10–year follow–up study. Kidney Int. 2007. 71(2):159–66.
21.Briganti EM., Branley P., Chadban SJ., Shaw JE., McNeil JJ., Welborn TA, et al. Smoking is associated with renal impairment and proteinuria in the normal population: the AusDiab kidney study. Am J Kidney Dis. 2002. 40(4):704–12.
22.Halimi JM., Giraudeau B., Vol S., Cacès E., Nivet H., Lebranchu Y, et al. Effects of current smoking and smoking discontinuation on renal function and proteinuria in the general population. Kidney Int. 2000. 58(3):1285–92.
23.Noborisaka Y., Honda R., Ishizaki M., Nakata M., Yamada Y. Alcohol and cigarette consumption, renal function and blood pressure in middle–aged healthy men. J Hum Hypertens. 2007. 21(12):966–8.
24.Yoon HJ., Park M., Yoon H., Son KY., Cho B., Kim S. The differential effect of cigarette smoking on glomerular filtration rate and proteinuria in an apparently healthy population. Hypertens Res. 2009. 32(3):214–9.
25.Zhang L., Zhang P., Wang F., Zuo L., Zhou Y., Shi Y, et al. Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis. 2008. 51(3):373–84.
26.Bazzano LA., He J., Muntner P., Vupputuri S., Whelton PK. Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Ann Intern Med. 2003. 138(11):891–7.
27.Gan WQ., Man SF., Sin DD. The interactions between cigarette smoking and reduced lung function on systemic inflammation. Chest. 2005. 127(2):558–64.
28.Eagan TM., Ueland T., Wagner PD., Hardie JA., Mollnes TE., Damås JK, et al. Systemic inflammatory markers in COPD: results from the Bergen COPD Cohort Study. Eur Respir J. 2010. 35(5):540–8.
Table 1.
Non smoker (n=211) | Smoker (n=1,035) | P‐valueb | |
---|---|---|---|
Age, years | 54.9±0.9 | 54.8±0.5 | 0.891 |
Body mass index, kg/m2 | 24.3±0.2 | 24.4±0.1 | 0.664 |
Blood pressure, mmHg | |||
Systolic | 123.8±1.3 | 124.0±0.6 | 0.881 |
Diastolic | 81.7±0.9 | 80.5±0.4 | 0.205 |
Glucose, mg/dL | 100.6±1.8 | 102.8±0.9 | 0.292 |
HbA1C, % | 5.8±0.08 | 5.9±0.03 | 0.138 |
Diabetes mellitus | 27 (8.1) | 165 (15.0) | 0.009 |
Hypertension | 76 (33.3) | 450 (42.3) | 0.044 |
Cardiovascular disease | 3 (0.68) | 46 (3.50) | 0.011 |
Drinking, g ethanol per day | 0.005 | ||
0 g | 50 (24.4) | 151 (14.4) | |
≤ 30 g | 136 (61.7) | 675 (62.9) | |
>30 g | 25 (13.9) | 209 (22.8) | |
Regular exercisec | 0.500 | ||
No | 164 (79.6) | 806 (76.8) | |
Yes | 47 (20.4) | 225 (23.1) |
Table 2.
Non smoker (n=211) | Smoker (n=1,035) | P‐valueb | |
---|---|---|---|
FEV1, L | 3.23±0.06 | 3.14±0.03 | 0.172 |
FEV1, predicted (%) | 91.7±1.2 | 88.5±0.5 | 0.023 |
FVC, L | 4.19±0.06 | 4.19±0.03 | 0.947 |
FVC, predicted (%) | 91.8±1.0 | 91.6±0.5 | 0.853 |
FEV1/FVC | 0.77±0.007 | 0.75±0.003 | <0.001 |
Serum creatinine, mg/dL | 0.98±0.010 | 0.97±0.006 | 0.208 |
eGFR, ml/min/1.73 m2 | 88.5±1.1 | 88.6±0.6 | 0.108 |
UACR, mg/g | 23.6±11.0 | 26.6±9.5 | 0.844 |
Albuminuriac | 0.200 | ||
(‐) | 198 (94.5) | 942 (91.7) | |
(+) | 13 (5.5) | 93 (8.3) | |
eGFR, ml/min/1.73 m2 | 0.437 | ||
≥ 60 | 206 (98.0) | 996 (97.1) | |
<60 | 5 (2.0) | 39 (2.9) | |
Ventilatory dysfunctiond | <0.001 | ||
Normal | 1,402 (78.3) | 725 (65.8) | |
Restrictive pattern | 151 (13.7) | 135 (12.0) | |
Obstructive pattern | 111 (8.0) | 267 (22.2) |
Table 3.
Non‐smoker (n=211) | Smoker (n=1,035) | |||
---|---|---|---|---|
FEV1, L | FVC, L | FEV1, L | FVC, L | |
LogUACR, mg/g | ‐0.156 | ‐0.180 | ‐0.132 | ‐0.136 |
P‐valueb | 0.067 | 0.020 | <0.001 | <0.001 |
eGFR, ml/min/1.73 m2 | 0.233 | 0.203 | 0.096 | 0.072 |
P‐valueb | 0.004 | 0.018 | 0.026 | 0.067 |
Table 4.
Non‐smoker (n=211) | Smoker (n=1,035) | |||
---|---|---|---|---|
FEV1, L | FVC, L | FEV1, L | FVC, L | |
Model 1b Albuminuria, mg/gc | ||||
(‐) | 3.14±0.04 | 4.12±0.05 | 3.07±0.02 | 4.15±0.03 |
(+) | 3.05±0.20 | 3.82±0.20 | 2.91±0.06 | 3.96±0.07 |
P‐valued | 0.672 | 0.153 | 0.018 | 0.036 |
eGFR, ml/min/1.73 m2 | ||||
≥ 60 | 3.14±0.04 | 4.10±0.04 | 3.06±0.02 | 3.99±0.09 |
<60 | 3.29±0.16 | 4.19±0.22 | 3.04±0.07 | 4.14±0.03 |
P‐valued | 0.355 | 0.679 | 0.774 | 0.098 |
Model2b Albuminuria, mg/gc | ||||
(‐) | 3.14±0.04 | 4.12±0.05 | 3.07±0.02 | 4.14±0.03 |
(+) | 3.05±0.20 | 3.83±0.21 | 2.90±0.06 | 3.93±0.07 |
P‐valued | 0.654 | 0.186 | 0.012 | 0.010 |
eGFR, ml/min/1.73 m2 | ||||
≥ 60 | 3.13±0.04 | 4.10±0.05 | 3.05±0.02 | 4.13±0.10 |
<60 | 3.27±0.17 | 4.21±0.22 | 3.04±0.08 | 3.94±0.10 |
P‐valued | 0.469 | 0.594 | 0.874 | 0.075 |