Journal List > J Korean Soc Hypertens > v.19(1) > 1089809

Kim: Renal Sodium Transporters and Water Channels

ABSTRACT

Hypertension is closely related to salt and water retention. The kidney plays an important role in the blood pressure regulation primarily to modulating tubular sodium and water reabsorption. The regulation of the salt and water balance depends upon an array of solute and water channels in the renal tubules. An altered regulation of sodium and water channels in the kidney may be related to various pathological conditions associated with altered salt and water retention. This review will discuss renal handling of sodium and water, with particular emphasis on aquaporins and renal sodium transporters and channels.

References

1. Greger R. Physiology of renal sodium transport. Am J Med Sci. 2000; 319:51–62.
crossref
2. Esteva-Font C, Ballarin J, Fernandez-Llama P. Molecular biology of water and salt regulation in the kidney. Cell Mol Life Sci. 2012; 69:683–95.
crossref
3. Verkman AS. Aquaporins: translating bench research to human disease. J Exp Biol. 2009; 212(Pt 11):1707–15.
crossref
4. McDonough AA. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2010; 298:R851–61.
crossref
5. Wang X, Armando I, Upadhyay K, Pascua A, Jose PA. The regulation of proximal tubular salt transport in hypertension: an update. Curr Opin Nephrol Hypertens. 2009; 18:412–20.
crossref
6. Magyar CE, Zhang Y, Holstein-Rathlou NH, McDonough AA. Proximal tubule Na transporter responses are the same during acute and chronic hypertension. Am J Physiol Renal Physiol. 2000; 279:F358–69.
crossref
7. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011; 22:605–14.
crossref
8. Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ. Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol. 2003; 14:1419–26.
crossref
9. Glover M, O’shaughnessy KM. SPAK and WNK kinases: a new target for blood pressure treatment? Curr Opin Nephrol Hypertens. 2011; 20:16–22.
crossref
10. Yang SS, Lo YF, Wu CC, Lin SW, Yeh CJ, Chu P, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010; 21:1868–77.
crossref
11. Gamba G. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol. 2005; 288:F245–52.
crossref
12. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999; 104:R19–23.
13. Hamm LL, Feng Z, Hering-Smith KS. Regulation of sodium transport by ENaC in the kidney. Curr Opin Nephrol Hypertens. 2010; 19:98–105.
crossref
14. Pearce D. The role of SGK1 in hormone-regulated sodium transport. Trends Endocrinol Metab. 2001; 12:341–7.
crossref
15. Yun CC, Chen Y, Lang F. Glucocorticoid activation of Na(+)/H(+) exchanger isoform-3 roles of SGK1 and NHERF2. J Biol Chem. 2002; 277:7676–83.
16. Naray-Fejes-Toth A, Fejes-Toth G. The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Kidney Int. 2000; 57:1290–4.
17. Farjah M, Roxas BP, Geenen DL, Danziger RS. Dietary salt regulates renal SGK1 abundance: relevance to salt sensitivity in the Dahl rat. Hypertension. 2003; 41:874–8.
18. Snyder PM, Price MP, McDonald FJ, Adams CM, Volk KA, Zeiher BG, et al. Mechanism by which Liddle’s syndrome mutations increase activity of a human epithelial Na+ channel. Cell. 1995; 83:969–78.
crossref
19. Sun Y, Zhang JN, Zhao D, Wang QS, Gu YC, Ma HP, et al. Role of the epithelial sodium channel in salt-sensitive hypertension. Acta Pharmacol Sin. 2011; 32:789–97.
crossref
20. King LS, Choi M, Fernandez PC, Cartron JP, Agre P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med. 2001; 345:175–9.
21. Hara-Chikuma M, Verkman AS. Aquaporin-1 facilitates epithelial cell migration in kidney proximal tubule. J Am Soc Nephrol. 2006; 17:39–45.
crossref
22. Boone M, Deen PM. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch. 2008; 456:1005–24.
crossref
23. Yasui M, Zelenin SM, Celsi G, Aperia A. Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements. Am J Physiol. 1997; 272:F443–50.
crossref
24. Hasler U, Nunes P, Bouley R, Lu HA, Matsuzaki T, Brown D. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem. 2008; 283:6643–61.
crossref
25. Loonen AJ, Knoers NV, van Os CH, Deen PM. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008; 28:252–65.
crossref
26. Marples D, Christensen S, Christensen EI, Ottosen PD, Nielsen S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest. 1995; 95:1838–45.
crossref
27. Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996; 97:1960–8.
crossref
28. Earm JH, Christensen BM, Frokiaer J, Marples D, Han JS, Knepper MA, et al. Decreased aquaporin-2 expression and apical plasma membrane delivery in kidney collecting ducts of polyuric hypercalcemic rats. J Am Soc Nephrol. 1998; 9:2181–93.
crossref
29. Pedersen RS, Bentzen H, Bech JN, Nyvad O, Pedersen EB. Urinary aquaporin-2 in healthy humans and patients with liver cirrhosis and chronic heart failure during baseline conditions and after acute water load. Kidney Int. 2003; 63:417–25.
crossref
30. Apostol E, Ecelbarger CA, Terris J, Bradford AD, Andrews P, Knepper MA. Reduced renal medullary water channel expression in puromycin aminonucleoside-induced nephrotic syndrome. J Am Soc Nephrol. 1997; 8:15–24.
crossref
31. Ma SK, Kang JS, Choi KC, Lee JU. Altered regulation of sodium-transport hormones in the kidney of rats with glycyrrhizic acid-induced hypertension. J Korean Soc Hypertens. 2004; 10:35–41.
32. Kim SW, Wang W, Kwon TH, Knepper MA, Frokiaer J, Nielsen S. Increased expression of ENaC subunits and increased apical targeting of AQP2 in the kidneys of spontaneously hypertensive rats. Am J Physiol Renal Physiol. 2005; 289:F957–68.
crossref
33. Graffe CC, Bech JN, Lauridsen TG, Vase H, Pedersen EB. Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension. BMC Nephrol. 2012; 13:15.
crossref
34. Bankir L, Bichet DG, Bouby N. Vasopressin V2 receptors, ENaC. and sodium reabsorption: a risk factor for hypertension? Am J Physiol Renal Physiol. 2010; 299:F917–28.

Table 1.
Renal sodium transporters and channels
Protein Localization Transport Physiology
Sodium-protein exchanger type 3 (NHE-3) PT Na+, H+ ECFV, BP, acid-base regulation
Sodium-phosphate cotransporter type 2 (NaPi-2) PT Na+, P+ ECFV, BP, P+ metabolism
Sodium-potassium chloride cotransporter-2 (NKCC2) TAL Na+, K+, Cl- ECFV, BP
Sodium chloride cotransporter (NCC) DT Na+, Cl- ECFV, BP
Epithelial sodium channel (ENac) CD Na+ ECFV, BP

PT, proximal tubule; TAL, thick ascending limb; DT, distal tubule; CD, collecting duct; ECFV, extracellular fluid volume, BP, blood pressure.

Table 2.
Renal water channels
Protein Localization Transport Physiology
Aquaporin-1 Apical and basolateral plasma membrane of PT, thin limb of Henle’s loop cells and descending vasa recta Water Urine concentration, cell migration
Aquaporin-7 Apical plasma membrane of PT (S3) Water, anion, glicerol Water reabsorption, glycerol reabsorption
Aquaporin-11 Endoplasmic reticulum of PT Water Organelle maintenance
Aquaporin-2 Apical plasma membrane and intracellular vesicle of CD principal cell Water Urine concentration
Aquaporin-3 Basolateral plasma membrane and intracellular vesicle of CD principal cell Water and urea Urine concentration
Aquaporin-4 Basolateral plasma membrane and intracellular vesicle of CD principal cell Water Urine concentration
Aquaporin-6 Intracellular vesicles of CD intercalated cells Water, anion, glicerol Urine concentration, acid secretion

PT, proximal tubule; CD, collecting duct.

TOOLS
Similar articles