Journal List > Urogenit Tract Infect > v.10(2) > 1084188

Lim, Lee, and Kim: Management of Extended-Spectrum Beta-Lactamase-Positive Gram-Negative Bacterial Urologic Infections

Abstract

Extended-spectrum beta-lactamases (ESBLs) are enzymes that confer increased resistance to commonly used antibiotics. The prevalence rates of ESBL producing bacteria are increasing, and the associated increase in morbidity and mortality is becoming a public health concern. ESBL producers are emerging as an important cause of urinary tract infection (UTI) and empirical therapy should therefore be carefully selected for patients with UTI. Fosfomycin or nitrofurantoin would be an appropriate choice for empirical therapy of uncomplicated UTI. Ertapenem or cefepime might be recommended for initial empirical therapy patients suspected of having complicated UTI.

REFERENCES

1.Paterson DL., Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005. 18:657–86.
2.Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003. 36(Suppl 1):S11–23.
crossref
3.Rupp ME., Fey PD. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs. 2003. 63:353–65.
4.Picozzi SC., Casellato S., Rossini M., Paola G., Tejada M., Costa E, et al. Extended-spectrum beta-lactamase-positive Escherichia coli causing complicated upper urinary tract infection: urologist should act in time. Urol Ann. 2014. 6:107–12.
crossref
5.Jacoby GA., Munoz-Price LS. The new beta-lactamases. N Engl J Med. 2005. 352:380–91.
6.Kliebe C., Nies BA., Meyer JF., Tolxdorff-Neutzling RM., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985. 28:302–7.
crossref
7.Singer RS., Finch R., Wegener HC., Bywater R., Walters J., Lipsitch M. Antibiotic resistance—the interplay between antibiotic use in animals and human beings. Lancet Infect Dis. 2003. 3:47–51.
crossref
8.Ambler RP., Coulson AF., Frère JM., Ghuysen JM., Joris B., Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991. 276(Pt 1):269–70.
9.Bush K., Jacoby GA., Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995. 39:1211–33.
crossref
10.Dhillon RH., Clark J. ESBLs: a clear and present danger? Crit Care Res Pract. 2012. DOI: doi: 10.1155/2012/625170.
crossref
11.Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001. 14:933–51. table of contents.
12.Salverda ML., De Visser JA., Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev. 2010. 34:1015–36.
crossref
13.Heritage J., M'Zali FH., Gascoyne-Binzi D., Hawkey PM. Evolution and spread of SHV extended-spectrum beta-lactamases in gram-negative bacteria. J Antimicrob Chemother. 1999. 44:309–18.
14.Tzouvelekis LS., Tzelepi E., Tassios PT., Legakis NJ. CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents. 2000. 14:137–42.
15.Sun Y., Zeng Z., Chen S., Ma J., He L., Liu Y, et al. High prevalence of bla(CTX-M) extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin Microbiol Infect. 2010. 16:1475–81.
crossref
16.Cantón R., Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006. 9:466–75.
17.Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement: CLSI document M100-S25. Wayne: CLSI;2015.
18.The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters: version 5.0, 2015 [Internet]. Basel: European Society of Clinical Microbiology and Infectious Diseases;2015. [cited 2015 Jun 29]. Available from:. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf.
19.Hombach M., Bloemberg GV., Böttger EC. Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011 on antibiotic susceptibility test reporting of Gram-negative bacilli. J Antimicrob Chemother. 2012. 67:622–32.
crossref
20.Pitout JD., Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008. 8:159–66.
21.Arlet G., Brami G., Décrè D., Flippo A., Gaillot O., Lagrange PH, et al. Molecular characterisation by PCR-restriction fragment length polymorphism of TEM beta-lactamases. FEMS Microbiol Lett. 1995. 134:203–8.
22.Randegger CC., Hächler H. Real-time PCR and melting curve analysis for reliable and rapid detection of SHV extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2001. 45:1730–6.
23.Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004. 48:1–14.
24.Reinert RR., Low DE., Rossi F., Zhang X., Wattal C., Dowzicky MJ. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother. 2007. 60:1018–29.
crossref
25.Bell JM., Turnidge JD., Gales AC., Pfaller MA., Jones RN. Sentry APAC Study Group. Prevalence of extended spectrum beta-lactamase (ESBL)-producing clinical isolates in the Asia-Pacific region and South Africa: regional results from SENTRY Antimicrobial Surveillance Program (1998-99). Diagn Microbiol Infect Dis. 2002. 42:193–8.
26.Hawkey PM. Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect. 2008. 14(Suppl 1):159–65.
27.Pai H. The characteristics of extended-spectrum beta-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J. 1998. 39:514–9.
28.Li XM., Jang SJ., Bae IK., Park G., Kim YS., Shin JH, et al. Frequency of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase genes in Escherichia coli and Klebsiella pneumoniae over a three-year period in a University Hospital in Korea. Korean J Lab Med. 2010. 30:616–23.
crossref
29.Lee DS., Lee CB., Lee SJ. Prevalence and risk factors for extended spectrum Beta-lactamase-producing uropathogens in patients with urinary tract infection. Korean J Urol. 2010. 51:492–7.
crossref
30.Kang CI., Wi YM., Lee MY., Ko KS., Chung DR., Peck KR, et al. Epidemiology and risk factors of community onset infections caused by extended-spectrum β-lactamase-producing Escherichia coli strains. J Clin Microbiol. 2012. 50:312–7.
crossref
31.Paterson DL., Ko WC., Von Gottberg A., Mohapatra S., Casellas JM., Goossens H, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis. 2004. 39:31–7.
32.Paterson DL., Ko WC., Von Gottberg A., Casellas JM., Mulazi-moglu L., Klugman KP, et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol. 2001. 39:2206–12.
33.Endimiani A., Luzzaro F., Perilli M., Lombardi G., Colì A., Tamborini A, et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum beta-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis. 2004. 38:243–51.
34.Mohr JF 3rd. Update on the efficacy and tolerability of meropenem in the treatment of serious bacterial infections. Clin Infect Dis. 2008. 47(Suppl 1):S41–51.
crossref
35.Kaniga K., Flamm R., Tong SY., Lee M., Friedland I., Redman R. Worldwide experience with the use of doripenem against extended-spectrum-beta-lactamase-producing and ciprofloxacin-resistant Enterobacteriaceae: analysis of six phase 3 clinical studies. Antimicrob Agents Chemother. 2010. 54:2119–24.
36.Papp-Wallace KM., Endimiani A., Taracila MA., Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011. 55:4943–60.
crossref
37.Jacoby G., Han P., Tran J. Comparative in vitro activities of carbapenem L-749,345 and other antimicrobials against multiresistant gram-negative clinical pathogens. Antimicrob Agents Chemother. 1997. 41:1830–1.
crossref
38.Lee NY., Lee CC., Huang WH., Tsui KC., Hsueh PR., Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis. 2013. 56:488–95.
crossref
39.Thomson KS., Moland ES. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2001. 45:3548–54.
40.Zanetti G., Bally F., Greub G., Garbino J., Kinge T., Lew D, et al. Cefepime Study Group. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother. 2003. 47:3442–7.
crossref
41.Endimiani A., Perez F., Bonomo RA. Cefepime: a reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther. 2008. 6:805–24.
crossref
42.Jones RN., Marshall SA. Antimicrobial activity of cefepime tested against Bush group I beta-lactamase-producing strains resistant to ceftazidime. A multilaboratory national and international clinical isolate study. Diagn Microbiol Infect Dis. 1994. 19:33–8.
43.Chopra T., Marchaim D., Veltman J., Johnson P., Zhao JJ., Tansek R, et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2012. 56:3936–42.
crossref
44.Harris PN., Tambyah PA., Paterson DL. β-lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015. 15:475–85.
crossref
45.Bonfiglio G., Livermore DM. Inoculum effects on Etests and agar dilution minimum inhibitory concentrations. Piperacillin and piperacillin-tazobactam against Staphylococcus aureus. Diagn Microbiol Infect Dis. 1994. 19:163–6.
crossref
46.Chaubey VP., Pitout JD., Dalton B., Ross T., Church DL., Gregson DB, et al. Clinical outcome of empiric antimicrobial therapy of bacteremia due to extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. BMC Res Notes. 2010. 3:116.
crossref
47.Zarkotou O., Pournaras S., Tselioti P., Dragoumanos V., Pitiriga V., Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011. 17:1798–803.
crossref
48.Shepherd AK., Pottinger PS. Management of urinary tract infections in the era of increasing antimicrobial resistance. Med Clin North Am. 2013. 97:737–57. xii.
crossref
49.Gupta K., Hooton TM., Naber KG., Wullt B., Colgan R., Miller LG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011. 52:e103–20.
crossref
50.Gupta K., Bhadelia N. Management of urinary tract infections from multidrug-resistant organisms. Infect Dis Clin North Am. 2014. 28:49–59.
crossref
51.Grabe M., Bartoletti R., Bjerklund Johansen TE., Cai T., Çek M., Köves B, et al. Guidelines on urological infections. Arnhem: European Association of Urology;2015.
52.Lichtenberger P., Hooton TM. Complicated urinary tract infections. Curr Infect Dis Rep. 2008. 10:499–504.
crossref
53.Pallett A., Hand K. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. J Antimicrob Chemother. 2010. 65(Suppl 3):iii25–33.
crossref
54.Grif K., Dierich MP., Pfaller K., Miglioli PA., Allerberger F. In vitro activity of fosfomycin in combination with various antista-phylococcal substances. J Antimicrob Chemother. 2001. 48:209–17.
crossref
55.Falagas ME., Vouloumanou EK., Togias AG., Karadima M., Kapaskelis AM., Rafailidis PI, et al. Fosfomycin versus other antibiotics for the treatment of cystitis: a meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2010. 65:1862–77.
crossref
56.Rosso-Fernández C., Sojo-Dorado J., Barriga A., Lavín-Alconero L., Palacios Z., López-Hernández I, et al. FOREST Study Group. Fosfomycin versus meropenem in bacteraemic urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli (FOREST): study protocol for an investigator-driven randomised controlled trial. BMJ Open. 2015. 5:e007363.
crossref
57.Prakash V., Lewis JS 2nd., Herrera ML., Wickes BL., Jorgensen JH. Oral and parenteral therapeutic options for outpatient urinary infections caused by enterobacteriaceae producing CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Che-mother. 2009. 53:1278–80.
58.Ramphal R., Ambrose PG. Extended-spectrum beta-lactamases and clinical outcomes: current data. Clin Infect Dis. 2006. 42(Suppl 4):S164–72.
59.Beytur A., Yakupogullari Y., Oguz F., Otlu B., Kaysadu H. Oral amoxicillin-clavulanic Acid treatment in urinary tract infections caused by extended-spectrum Beta-lactamase-producing organisms. Jundishapur J Microbiol. 2014. 8:e13792.
crossref
60.de La Blanchardière A., Dargère S., Guérin F., Daurel C., Saint-Lorant G., Verdon R, et al. Non-carbapenem therapy of urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae. Med Mal Infect. 2015. 45:169–72.
crossref
61.Boucher HW., Talbot GH., Benjamin DK Jr., Bradley J., Guidos RJ., Jones RN, et al. Infectious Diseases Society of America. 10 x '20 Progress: development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013. 56:1685–94.

Table 1.
Main features of two general classification schemes [10]
Bush-Jacoby-Medeiros group Ambler molecular classification Preferred substrate Representative enzyme Resistance or susceptibility to beta-lactamase inhibitor
1 C Cephalosporins AmpC Resistant
2b A Penicillins, cephalosporins TEM, SHV Susceptible
2be A Penicillins, extended-spectrum cephalosporins, monobactams TEM, SHV Susceptible
2d D Penicillins, cloxacillin OXA Resistant
2e A Cephalosporins Inducible cephalosporinases from Proteus vulgaris Susceptible
2f A Penicillins, cephalosporins, carbapenems NMC-A from Enterobacter cloacae Resistant
3 B Most beta-lactams including carbapenems L1 from Stenotrophomonas maltophilia Resistant

Reused from the article of Dhillon and Clark. Crit Care Res Pract 2012. DOI: 10.1155/2012/625170 [10].

Table 2.
Suggested treatment regimensa) for UTIs secondary to ESBL producing organisms [50]
Uncomplicated UTI
  Fosfomycin, 3 g by mouth sachet in 90-120 ml of water
  Nitrofurantoin, 100 mg by mouth twice a day
  Cefdinir, 300 mg by mouth twice a day, and amoxicillin/clavulanic acid, 875 mg by mouth twice a day (in vitro data only)
  When susceptibilities are known or local antibiogram is supportive:
    Trimethoprim/sulfamethoxazole 1 double-strength tablet by mouth twice a day
     Fluoroquinolones (500 mg by mouth twice a day for ciprofloxacin or 500 mg by mouth daily levofloxacin)
Complicated UTI
  Cefepime, 2 g IV every 12 hours
  Ertapenem, 1 g IV per day (other carbapenems also acceptable)
  Aminoglycosides IV (amikacin, 15-20 mg/kg per day; gentamycin, 4-7 mg/kg per day)

Reused from the article of Gupta and Bhadelia. Infect Dis Clin North Am 2014;28:49-59 [50] with permission.

UTI: urinary tract infection, ESBL: extended-spectrum beta-lactamases, IV: intravenous.

a) Doses are based on normal renal function and may need adjustment for reduced glomerular filtration rate.

TOOLS
Similar articles