초록
Background and Objectives
To evaluate and compare the diagnostic performances of grayscale ultrasound (US) and quantitative parameters obtained from texture analysis of grayscale US and elastography images in evaluating patients with diffuse thyroid disease (DTD).
Materials and Methods
From September to December 2012, 113 patients (mean age, 43.4±10.7 years) who had undergone preoperative staging US and elastography were included in this study. Assessment of the thyroid parenchyma for the diagnosis of DTD was made if US features suggestive of DTD were present. Nine histogram parameters were obtained from the grayscale US and elastography images, from which ‘ grayscale index’ and ‘ elastography index’ were calculated. Diagnostic performances of grayscale US, texture analysis using grayscale US and elastography were calculated and compared.
Results
Of the 113 patients, 85 (75.2%) patients were negative for DTD and 28 (24.8%) were positive for DTD on pathology. The presence of US features suggestive of DTD showed significantly higher rates of DTD on pathology, 60.7% to 8.2% (p<0.001). Specificity, accuracy, and positive predictive value was highest in US features, 91.8%, 84.1%, and 87.6%, respectively (all ps<0.05). Grayscale index showed higher sensitivity and negative predictive value (NPV) than US features. All diagnostic performances were higher for grayscale index than the elastography index. Area under the curve of US features was the highest, 0.762, but without significant differences to grayscale index or mean of elastography (all ps>0.05).
REFERENCES
1). Moon WK, Choi JW, Cho N, Park SH, Chang JM, Jang M, et al. Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. AJR Am J Roentgenol. 2010; 195(6):1460–5.
2). Kim I, Kim EK, Yoon JH, Han KH, Son EJ, Moon HJ, et al. Diagnostic role of conventional ultrasonography and shear-wave elastography in asymptomatic patients with diffuse thyroid disease: initial experience with 57 patients. Yonsei Med J. 2014; 55(1):247–53.
3). Marcocci C, Vitti P, Cetani F, Catalano F, Concetti R, Pinchera A. Thyroid ultrasonography helps to identify patients with diffuse lymphocytic thyroiditis who are prone to develop hypothyroidism. J Clin Endocrinol Metab. 1991; 72(1):209–13.
4). Pedersen OM, Aardal NP, Larssen TB, Varhaug JE, Myking O, Vik-Mo H. The value of ultrasonography in predicting autoimmune thyroid disease. Thyroid. 2000; 10(3):251–9.
5). Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY. Diagnostic performance of grayscale US and elastography in solid thyroid nodules. Radiology. 2012; 262(3):1002–13.
6). Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elasto- graphic features of malignant thyroid nodules. AJR Am J Roentgenol. 2009; 193(5):W416–23.
7). Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elasto-graphy: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007; 92(8):2917–22.
8). Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol. 2004; 59(12):1061–9.
9). Friedrich-Rust M, Ong MF, Herrmann E, Dries V, Samaras P, Zeuzem S, et al. Real-time elastography for noninvasive assessment of liver fibrosis in chronic viral hepatitis. AJR Am J Roentgenol. 2007; 188(3):758–64.
10). Gao S, Peng Y, Guo H, Liu W, Gao T, Xu Y, et al. Texture analysis and classification of ultrasound liver images. Biomed Mater Eng. 2014; 24(1):1209–16.
11). Gomez W, Pereira WC, Infantosi AF. Analysis of cooccurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Trans Med Imaging. 2012; 31(10):1889–99.
12). Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006; 239(2):341–50.
13). Xie P, Xiao Y, Liu F. Real-time ultrasound elastography in the diagnosis and differential diagnosis of subacute thyroiditis. J Clin Ultrasound. 2011; 39(8):435–40.
14). Yoon JH, Yoo J, Kim EK, Moon HJ, Lee HS, Seo JY, et al. Real-time elastography in the evaluation of diffuse thyroid disease: a study based on elastography histogram parameters. Ultrasound Med Biol. 2014; 40(9):2012–9.
15). Mazziotti G, Sorvillo F, Iorio S, Carbone A, Romeo A, Piscopo M, et al. Grey-scale analysis allows a quantitative evaluation of thyroid echogenicity in the patients with Hashimoto's thyroiditis. Clin Endocrinol (Oxf). 2003; 59(2):223–9.
16). Acharya UR, Vinitha Sree S, Mookiah MR, Yantri R, Molinari F, Zieleznik W, et al. Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification. Proc Inst Mech Eng H. 2013; 227(7):788–98.
17). Schiemann U, Avenhaus W, Konturek JW, Gellner R, Hengst K, Gross M. Relationship of clinical features and laboratory parameters to thyroid echogenicity measured by standardized grey scale ultrasonography in patients with Hashimoto's thyroiditis. Med Sci Monit. 2003; 9(4):MT13–7.
18). Loy M, Cianchetti ME, Cardia F, Melis A, Boi F, Mariotti S. Correlation of computerized grayscale sonographic findings with thyroid function and thyroid autoimmune activity in patients with Hashimoto's thyroiditis. J Clin Ultrasound. 2004; 32(3):136–40.
19). Kim SY, Kim EK, Moon HJ, Yoon JH, Kwak JY. Application of texture analysis in the differential diagnosis of benign and malignant thyroid nodules: comparison with grayscale ultrasound and elastography. AJR Am J Roentgenol. 2015; 205(3):W343–51.
20). Kim EY, Kim WG, Kim WB, Kim TY, Kim JM, Ryu JS, et al. Coexistence of chronic lymphocytic thyroiditis is associated with lower recurrence rates in patients with papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2009; 71(4):581–6.
21). Wang J, Guo L, Shi X, Pan W, Bai Y, Ai H. Real-time elastography with a novel quantitative technology for assessment of liver fibrosis in chronic hepatitis B. Eur J Radiol. 2012; 81(1):e31–6.
22). Willms A, Bieler D, Wieler H, Willms D, Kaiser KP, Schwab R. Correlation between sonography and antibody activity in patients with Hashimoto thyroiditis. J Ultrasound Med. 2013; 32(11):1979–86.
23). Emblem KE, Nedregaard B, Nome T, Due-Tonnessen P, Hald JK, Scheie D, et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology. 2008; 247(3):808–17.
24). Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging. 2010; 10:137–43.
25). Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K. Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol. 2012; 67(2):157–64.
Table 1.
Table 2.
Cutoff | Sensitivity | p | Specificity | p | Accuracy | p | PPV | p | NPV | p | A z (95% CI) | p∗ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gray scale US | - | 60.7 | - | 91.8 | - | 84.1 | - | 70.8 | - | 87.6 | - | 0.762 | - |
(17/28) | (78/85) | (95/113) | (17/24) | (78/89) | (0.666, 0.860) | ||||||||
Texture analysis of gray scale US | 0.005† | < | <0.001† | 0.002† | <0.001† | 0.316† | 0.108† | ||||||
Mean | ≤86.9 | 85.7 | 0.705∗ | < 29.4 | <0.001∗ | 43.4 | 0.002∗ | 28.6 | 0.241∗ | 86.2 | 0.444∗ | 0.558 | 0.264∗ |
(24/28) | (25/85) | (49/113) | (24/84) | (25/29) | (0.433, 0.683) | ||||||||
SD | >13.9 | 78.6 | 0.067∗ | 49.4 | 0.053∗ | 56.6 | 0.368∗ | 33.9 | 0.881∗ | 87.5 | 0.187∗ | 0.632 | 0.403∗ |
(22/28) | (42/85) | (64/113) | (22/65) | (42/48) | (0.517, 0.747) | ||||||||
Skewness | >0.3 | 57.1 | 0.005∗ | 64.7 | - | 62.8 | - | 34.8 | - | 82.1 | 0.079∗ | 0.585 | 0.363∗ |
(16/28) | (55/85) | (71/113) | (16/46) | (55/67) | (0.459, 0.711) | ||||||||
Kurtosis | >3.8 | 53.6 | 0.002∗ | 57.6 | 0.270∗ | 56.6 | 0.260∗ | 29.4 | 0.336∗ | 79.0 | 0.032∗ | 0.530 | 0.133∗ |
(15/28) | (49/85) | (63/113) | (15/51) | (49/62) | (0.402, 0.658) | ||||||||
Contrast | >1 | 71.4 | 0.014∗ | 48.2 | 0.023∗ | 54.0 | 0.178∗ | 31.3 | 0.576∗ | 83.7 | 0.048∗ | 0.582 | 0.084∗ |
(20/28) | (41/85) | (61/113) | (20/64) | (41/49) | (0.469, 0.694) | ||||||||
Correlation | >0.7 | 85.7 | 0.654∗ | 45.9 | 0.010∗ | 55.8 | 0.274∗ | 34.3 | 0.930∗ | 90.7 | 0.783∗ | 0.624 | 0.485∗ |
(24/28) | (39/85) | (63/113) | (24/70) | (39/43) | (0.516, 0.731) | ||||||||
Uniformity | ≤0.5 | 85.7 | 0.309∗ | 41.2 | 0.001∗ | 52.2 | 0.105∗ | 32.4 | 0.681∗ | 89.8 | 0.321∗ | 0.604 | 0.080∗ |
(24/28) | (35/85) | (59/113) | (24/74) | (35/39) | (0.493, 0.716) | ||||||||
Homogeneity | ≤0.9 | 71.4 | 0.014∗ | 49.4 | 0.037∗ | 54.9 | 0.230∗ | 31.8 | 0.635∗ | 84.0 | 0.054∗ | 0.586 | 0.105∗ |
(20/28) | (42/85) | (62/113) | (20/63) | (42/50) | (0.473, 0.670) | ||||||||
Entropy | >1.0 | 89.3> | >0.999∗ | 40.0< | <0.001∗ | 52.2 | 0.105∗ | 32.9 | 0.734∗ | 91.9 | 0.581∗ | 0.640 | 0.180∗ |
(25/28) | (34/85) | (59/113) | (25/76) | (34/37) | (0.529, 0.751) | ||||||||
Grayscale index | >−0.3 | 89.3 | - | 41.2 | 0.001∗ | 53.1 | 0.134∗ | 33.3 | 0.794∗ | 92.1 | - | 0.661 | - |
(25/28) | (35/85) | (60/113) | (25/75) | (35/38) | (0.554, 0.769) | ||||||||
Texture analysis of RTE | 0.002† | 0.244† | 0.057† | 0.074† | 0.584† | 0.093† | |||||||
Mean | ≤167.7 | 60.7 | 0.002∗ | < 65.9 | <0.001∗ | 64.6 | 0.039∗ | 37.0 | 0.108∗ | 83.6 | 0.242∗ | 0.645 | - |
(17/28) | (56/85) | (73/113) | (17/46) | (56/67) | (0.525, 0.766) | ||||||||
SD | >51.7 | 32.1< | <0.001∗ | 82.4 | 0.314∗ | 70.0 | 0.158∗ | 37.5 | 0.154∗ | 78.7 | 0.034∗ | 0.540 | 0.251∗ |
(9/28) | (70/85) | (79/113) | (9/24) | (70/89) | (0.409, 0.671) | ||||||||
Skewness | ≤−0.9 | 78.6 | 0.142∗ | 34.1< | <0.001∗ | 45.1< | <0.001∗ | 28.2 | 0.020∗ | 82.9 | 0.326∗ | 0.490 | 0.077∗ |
(22/28) | (29/85) | (51/113) | (22/78) | (29/35) | (0.368, 0.612) | ||||||||
Kurtosis | ≤5.6 | 28.6< | <0.001∗ | 87.1> | >0.999∗ | 72.6 | 0.315∗ | 42.1 | 0.283∗ | 78.7 | 0.035∗ | 0.546 | 0.242∗ |
(8/28) | (74/85) | (82/113) | (8/19) | (74/94) | (0.415, 0.678) | ||||||||
Contrast | ≤0.6 | 42.9< | <0.001∗ | 80.0 | 0.152∗ | 70.8 | 0.218∗ | 41.4 | 0.239∗ | 81.0 | 0.147∗ | 0.612 | 0.648∗ |
(12/28) | (68/85) | (80/113) | (12/29) | (68/84) | (0.487, 0.737) | ||||||||
Correlation | >0.8 | 42.9< | <0.001∗ | 87.1 | - | 76.1 | - | 52.2 | - | 82.2 | 0.116∗ | 0.577 | 0.438∗ |
(12/28) | (74/85) | (86/113) | (12/23) | (74/90) | (0.441, 0.713) | ||||||||
Uniformity | >0.2 | 75.0 | 0.079∗ | 37.7 | <0.001∗ | 46.9 | <0.001∗ | 28.4 | 0.020∗ | 82.1 | 0.276∗ | 0.510 | 0.141∗ |
(21/28) | (32/85) | (53/113) | (21/74) | (32/39) | (0.385, 0.635) | ||||||||
Homogeneity | ≤0.9 | 92.9 | - | 24.7 | <0.001∗ | 41.6 | <0.001∗ | 28.9 | 0.009∗ | 91.3 | - | 0.523 | 0.130∗ |
(26/28) | (21/85) | (47/113) | (26/90) | (21/23) | (0.406, 0.640) | ||||||||
Entropy | >1.8 | 82.1 | 0.067∗ | 32.9 | <0.001∗ | 45.1 | <0.001∗ | 28.8 | 0.006∗ | 84.9 | 0.206∗ | 0.548 | 0.211∗ |
(23/28) | (28/85) | (51/113) | (23/80) | (28/33) | (0.423, 0.665) | ||||||||
Elastography index | >−1.1 | 85.7 | 0.142∗ | 28.2 | <0.001∗ | 42.5 | <0.001∗ | 28.2 | 0.006∗ | 85.7 | 0.241∗ | 0.515 | 0.138∗ |
(24/28) | (24/85) | (48/113) | (24/85) | (24/28) | (0.394, 0.633) |